Rigorous mechanistic models of refining processes are often too complex, which results in long modeling times, low model computational efficiencies, and poor convergence, limiting the application of mechanistic-model-based process optimization and advanced control in complex refining production processes. To address this problem and take advantage of big data technology, this study used case-based reasoning (CBR) for process optimization. The proposed method makes full use of previous process cases and reuses previous process cases to solve production optimization problems. The proposed process optimization method was applied to an actual fluid catalytic cracking maximizing iso-paraffins (MIP) production process for industrial validation. The results showed that the CBR method can be used to obtain optimization results under different optimization objectives, with a solution time not exceeding 1 s. The CBR method based on big data technology proposed in this study provides a feasible solution for fluid catalytic cracking to achieve online process optimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038123 | PMC |
http://dx.doi.org/10.1039/d1ra03228c | DOI Listing |
Phys Rev Lett
December 2024
Department of Basic Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
Work extraction is one of the most central processes in quantum thermodynamics. However, the prior analysis of optimal extractable work has been restricted to a limited operational scenario where complete information about the initial state is given. Here, we introduce a general framework of black box work extraction, which addresses the inaccessibility of information on the initial state.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Cancer Rehabilitation and Survivorship, Department of Supportive Care, Princess Margaret Cancer Centre, Toronto, ON, Canada.
Background: Virtual follow-up (VFU) has the potential to enhance cancer survivorship care. However, a greater understanding is needed of how VFU can be optimized.
Objective: This study aims to examine how, for whom, and in what contexts VFU works for cancer survivorship care.
Chem Biodivers
January 2025
Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.
This study presents, for the first time, the comparison of behavior between two commonly found plant species, their extracts, and their major constituents (glucose and sucrose constituting over 70% of their dried extract) to synthesize zinc oxide (ZnO) nanoparticles (NPs) from zinc nitrate hexahydrate. The findings underscore the critical role of sugars as key constituents in facilitating this synthesis. This research demonstrates that the process can occur at relatively low temperatures (120°C).
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cardiac Surgery, Peking University Third Hospital, Beijing 100191, China.
Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Biology, School of Health Sciences, Medicine & Health, University of Manchester, Manchester, United Kingdom.
Background: Despite the comparatively high prevalence of possible sarcopenia among young-old adults in the community, there is currently no available and effective social media-based intervention to increase the awareness and change the behavior of the target population to prevent sarcopenia. Using co-design methodology, we developed a multicomponent intervention strategy of health education and exercise for sarcopenia prevention utilizing the TikTok platform.
Objectives: The primary purpose of this study is to examine the feasibility and acceptability of the social media-based intervention to enhance muscle function in community-dwelling young-old adults with possible sarcopenia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!