Graphene sheets decorated with nickel or copper oxides that were anchored on polyaniline (denoted as PANI-graphene/NiO and PANI-graphene/CuO) were prepared by a simple, easy to-control electrochemical method and applied as novel materials for sensitive and selective methanol sensing. The fabricated sensors exhibited good electrocatalytic activity, appropriate dynamic linear range (20-1300 mM), sensitivity (0.2-1.5 μA mM cm) and excellent selectivity towards methanol. It should be highlighted from the selectivity tests that no significant interference was observed from ethanol and other alcohols. To our best knowledge, using inexpensive but efficient transition metals like Ni, Cu instead of Pt, Pd and their composites with PANI, graphene would be scientifically novel and practically feasible approach for sensor fabrication that could be potentially used to identify methanol adulteration in counterfeit alcoholic beverages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038141 | PMC |
http://dx.doi.org/10.1039/d1ra04164a | DOI Listing |
Sci Rep
December 2024
Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
This study explores the impact of metallic shells by electroforming method on the mechanical behavior of thermoplastic polyurethane (TPU)-based lattice structures. First, the TPU lattice structures were printed by additive manufacturing technique. Then layers of Ni and Cu as a thin shell were dressed on the TPU lattice structures in the electroforming baths of Ni and Cu solutions.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, 44600, Nepal.
Freshwater ecosystems, including high-altitude lakes, can be affected by trace metal pollution derived from a mix of natural sources and anthropogenic activities. These pollutants often collect in surface sediments, with notable concentrations in the deeper areas of lakes. To evaluate the environmental risk associated with metal contaminated sediment in Rara Lake, southern Himalaya, surface sediment samples were systematically collected in November 2018, with a subsequent specific emphasis on determinations of trace element concentrations.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Chongqing Key Laboratory of Land Quality Geological Survey, Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.
Heavy metals (HMs) pollution in agricultural soil-rice systems has attracted worldwide attention as it directly threatens regional ecological security and human health. To understand the heavy metal pollution of agriculture soil and rice in the high geological background areas, a total of 200 paddy soil and rice samples were collected in southeast Chongqing. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in paddy soil and rice were analyzed.
View Article and Find Full Text PDFMar Environ Res
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address:
The Bohai Sea (BS) is a semi-enclosed inland sea and China's most polluted coastal sea. With the rapid economic development of the circum-Bohai Sea region, large amounts of pollutants have been discharged into the BS, posing a significant threat to human health and the ecosystem. Great efforts have been made on investigating the levels of various pollutants in the BS; however, the priority pollutants which are required for the implementation of suitable environmental management and remediation measures in this system remain unclear.
View Article and Find Full Text PDFEnviron Geochem Health
December 2024
Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Cocoa-growing areas in Ghana have experienced a rise in mining activities affecting cocoa cultivation and increased concentrations of potentially toxic metals in the soil, which can accumulate in cocoa beans. This study evaluated potential toxic metal contamination in cocoa beans and soils from cocoa farms in mining and non-mining areas in Ghana. We used X-ray fluorescence and an ICP-MS to determine metal concentrations, and a Zeeman mercury analyzer to determine mercury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!