A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The butterfly effect: improving brain cone-beam CT image artifacts for stroke assessment using a novel dual-axis trajectory. | LitMetric

Background: Cone-beam computed tomography (CBCT) imaging of the brain can be performed in the angiography suite to support various neurovascular procedures. Relying on CBCT brain imaging solely, however, still lacks full diagnostic confidence due to the inferior image quality compared with CT and various imaging artifacts that persist even with modern CBCT.

Objective: To perform a detailed evaluation of image artifact improvement using a new CBCT protocol which implements a novel dual-axis 'butterfly' trajectory.

Methods: Our study included 94 scans from 47 patients who received CBCT imaging for assessment of either ischemia or hemorrhage during a neurovascular procedure. Both a traditional uni-axis 'circular' and novel dual-axis 'butterfly' protocol were performed on each patient (same-patient control). Each brain scan was divided into six regions and scored out of 3 based on six artifacts originating from various physics-based and patient-based sources.

Results: The dual-axis trajectory produces CBCT images with significantly fewer image artifacts than the traditional circular scan (whole brain average artifact score, AS: 0.20 vs 0.33), with the greatest improvement in bone beam hardening (AS: 0.13 vs 0.78) and cone-beam artifacts (AS: 0.04 vs 0.55).

Conclusions: Recent developments in CBCT imaging protocols have significantly improved image artifacts, which has improved diagnostic confidence for stroke and supports a direct-to-angiography suite transfer approach for patients with acute ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985729PMC
http://dx.doi.org/10.1136/neurintsurg-2021-018553DOI Listing

Publication Analysis

Top Keywords

image artifacts
12
novel dual-axis
12
cbct imaging
12
dual-axis trajectory
8
diagnostic confidence
8
dual-axis 'butterfly'
8
artifacts
6
cbct
6
brain
5
image
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!