The dual effects of co-infection of Plasmodium spp. and hookworm on malaria remain under debate. This study investigated prevalence, prevalence odds ratio (POR) of co-infection and impact of co-infection on malaria parasite density and haemoglobin levels in comparison to Plasmodium mono-infection. The protocol for this systematic review and meta-analysis is registered at PROPERO under ID: CRD42020202156. Relevant literatures were obtained from PubMed, ISI Web of Science, and Scopus on 25 December 2020. Mean difference (MD) and confidence interval (CI) of malaria parasite density and haemoglobin were compared using a random effect model. Heterogeneity was assessed using Cochrane Q and I statistics. Publication bias was determined by visualising funnel plot asymmetry. Of 1756 articles examined, 22,191 malaria cases across 37 studies included 6096 cases of co-infection of Plasmodium spp. and hookworm. The pooled prevalence was 20% (95% CI 15-26%, I 99.6%, 37 studies) and was varied in terms of geographical region. Co-infection occurred by chance (OR 0.97, p 0.97, 95% CI 0.73-1.27, I 95%, 30 studies). The mean malaria parasite density for co-infection (478 cases) was similar to Plasmodium mono-infection (920 cases) (p 0.24, MD 0.86, 95% CI - 0.58-2.29, I 100%, 7 studies). The mean haemoglobin level for co-infection (90 cases) was similar to Plasmodium mono-infection (415 cases) (p 0.15, MD - 0.63, 95% CI - 1.49-0.23, I 98%, 4 studies). Co-infection was common and occurred by chance but varied by geographic region. Further studies are required to investigate the mechanism of hookworm infection on malaria severity. Additionally, detection of hookworm infections among patients with malaria in endemic areas of both diseases is recommended to prevent severe malaria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9046215 | PMC |
http://dx.doi.org/10.1038/s41598-022-10569-2 | DOI Listing |
Malar J
January 2025
Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
Background: Malaria is the parasitic disease with the highest global morbidity and mortality. According to estimates from the World Health Organization (WHO), there were around 249 million cases in 2022, with 3.4% occurring in Angola.
View Article and Find Full Text PDFMalar J
January 2025
PMI Defeat Malaria Activity, University Research Co., LLC, Yangon, Burma.
Background: In Myanmar, progress towards malaria elimination has stagnated in some areas requiring deployment of new tools and approaches to accelerate malaria elimination. While there is evidence that networks of community-based malaria workers and insecticide-treated nets (ITNs) can reduce malaria transmission in a variety of settings, evidence for the effectiveness of other interventions, such as topical repellents, is limited. Since malaria transmission in Myanmar occurs outdoors, mainly among forest-goers, this study tested the effectiveness of topical repellents in combination with supplemental ITN distribution and strengthened networks of malaria workers.
View Article and Find Full Text PDFMalar J
January 2025
Malaria Research Unit, Institut Pasteur du Cambodge, PO Box 983, Phnom Penh, Cambodia.
Background: Mosquitoes are important drivers of infectious diseases transmission, with Anopheles mosquitoes being responsible of malaria transmission. In Cambodia, where malaria is prevalent in forested regions, understanding the ecology of these vectors is crucial. This study aimed to investigate the abundance, distribution, seasonal patterns, biting behaviour of Anopheles mosquitoes, and prevalence of Plasmodium, in Mondulkiri province, Northeastern Cambodia.
View Article and Find Full Text PDFCells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Rapid urbanization and migration in Latin America have intensified exposure to insect-borne diseases. Malaria, Chagas disease, yellow fever, and leishmaniasis have historically afflicted the region, while dengue, chikungunya, and Zika have been described and expanded more recently. The increased presence of synanthropic vector species and spread into previously unaffected areas due to urbanization and climate warming have intensified pathogen transmission risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!