The Tahiti petrel (Pseudobulweria rostrata) is a rare and declining seabird whose breeding biology and nest-site selection are poorly known. Nest-site selection is critical to seabird population fitness, and understanding the factors driving it is essential for designing effective conservation measures. Here, we measured several variables (topographical, physical and environmental) to characterize Tahiti petrel nesting habitats and burrows (i.e., width, height, depth and type: rocky cavity, dug into the soil or under a root) on Nemou Island in New Caledonia. The data were clustered using the HCPC (Hierarchical Clustering on Principal Component) method to identify principal habitat groups. This method was combined with logistic regressions to examine the influence of the variables on nest-site selection and breeding success. Our results showed that nest-site selection is linked to habitat groups (a combination of substrate and vegetation data), slope, orientation and soil depth, while breeding success is only influenced by nest characteristics (i.e., burrow type and width). Tahiti petrels prefer to nest on steep slopes in mature forests with rocky substrate and deep soil. Burrows were scatterred in small sub-colonies or isolated pairs, suggesting that nest-site selection depends on habitat quality rather than conspecific density. The study also revealed that breeding success is lower in rocky cavities and increases in burrows with wide entrances. Our nest-site selection survey is the first for the genus Pseudobulweria, and provides critical information for designing effective conservation programs in New Caledonia and the Pacific.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045628 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267408 | PLOS |
Ecology
January 2025
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
Optimal nest site selection is crucial in animals whose offspring are completely dependent on the shelter of a nest. Parental decisions influencing nest thermal conditions are particularly important because temperature strongly influences juvenile activity, metabolism, growth, developmental rate, survival, and adult body size. In small ectotherms such as bees, maternal decisions to nest in sun-exposed or shady sites can lead to marked differences in thermal microenvironments inside nests.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy.
A statistical procedure has been developed to derive a screening value from an observational study related to the developmental toxicity observed in loggerhead turtle (Caretta caretta) eggs exposed to long chain per- and polyfluoroalkyl substances (PFAS). A dataset of 41 nests in which the hatching rate was inversely correlated with the increase in the PFAS concentration in unhatched eggs was processed via a categorical regression approach. After outliers identification and removal, categorical regression analysis tested the relationships of the outcomes with the following parameters: perfluoro-nonanoic (PFNA), decanoic (PFDA), undecanoic (PFUdA), and dodecanoic (PFDoA) acids; perfluoroctansulfonate (PFOS); polychlorobiphenyls (PCBs) 28, 52, 101, 138, 153, 180; lead (Pb), total mercury (Hgtot), and cadmium (Cd); and other factors, such as "nest site," "clutch size," "incubation duration," and "nest minimum depth," as confounders/modifiers of the hatching rate.
View Article and Find Full Text PDFBiol Lett
January 2025
Department of Forest and Wildlife Ecology, University of Wisconsin-Madison,1630 Linden Drive, Madison, WI 53706, USA.
Assessment of species' vulnerability to climate change has been limited by mismatch between coarse macroclimate data and the fine scales at which species select habitat. Habitat mediates climate conditions, and fine-scale habitat features may permit species to exploit favourable microclimates, but habitat preferences can also constrain their ability to do so. We leveraged fine-resolution models of near-surface temperature and humidity in grasslands to understand how microclimates affect climatic exposure and demographics in a grassland bird community.
View Article and Find Full Text PDFEcol Evol
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences Hainan Normal University Haikou China.
The green sea turtle () is the only sea turtle species that breeds in China, and the largest remaining nesting grounds for green sea turtles in Chinese waters is found on the Qilianyu atoll of the Xisha Islands. Nesting site selection is particularly important for egg survival, and understanding the microhabitat characteristics of green sea turtle nesting sites is crucial for delineating priority conservation areas for nesting grounds. In this study, we aimed to examine the role of several microhabitat ecological factors in the selection of nesting sites and the success of nesting.
View Article and Find Full Text PDFResource partitioning is crucial for the coexistence of colonial herons, as it allows multiple species to share the same habitat while minimising competition. This study took advantage of a natural experiment in 2006 and 2007 when Black-crowned Night Herons were prevented from breeding at Lake Fetzara in the first year due to the presence of a feral cat. This event provided valuable insight into the spatial and temporal dynamics of nest site selection among coexisting heron species, which consisted of Cattle Egrets (), Little Egrets () and Squacco Herons ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!