The nucleus is the stiffest organelle in the cell. Several morphogenetic processes depend on its deformation such as cell migration, cell differentiation, or senescence. Recent studies have revealed various mechanisms involved in the regulation of nucleus stiffness and deformation. The implication of chromatin swelling, lamin density, actin filament, and microtubule network revealed that nucleus shape is the outcome of a fine balance between various sources of external forces and numerous means of internal resistance. In adherent cells, the actin network is the dominant player in external force production, whereas in nonadherent cells microtubules seem to take over. It is therefore important to set up reconstitution assays in order to decipher the exact contribution of each player in this mechanical balance. In this method, we describe a nucleus purification protocol that is suitable for nonadherent cells. We also show that purified nuclei can interact with microtubules and that nuclei purified from distinct cell types get differentially wrapped into the array of microtubules. A combination with a microtubule gliding assay offers the possibility to counterbalance the binding to the nucleus membrane by active motor-based forces pulling on microtubules. So this protocol allows an in-depth study of microtubule-nucleus interactions in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1983-4_25 | DOI Listing |
Epilepsia
January 2025
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland.
Purpose: Terbium-149 is a short-lived α-particle emitter, potentially useful for tumor-targeted therapy. The aim of this study was to investigate terbium-149 in combination with the somatostatin receptor (SSTR) agonist DOTATATE and the SSTR antagonist DOTA-LM3. The radiopeptides were evaluated to compare their therapeutic efficacy in vitro and in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Max Planck Institute for Biology, Tübingen 72076, Germany.
Most eukaryotes have one nucleus and nuclear genome per cell. Ciliates have instead evolved distinct nuclei that coexist in each cell: a silent germline vs. transcriptionally active somatic nuclei.
View Article and Find Full Text PDFEMBO J
October 2024
Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such structures in human genomic DNA have remained unclear. Here we utilise high-affinity i-motif immunoprecipitation followed by sequencing to map i-motifs in the purified genomic DNA of human MCF7, U2OS and HEK293T cells.
View Article and Find Full Text PDFGenes Cells
October 2024
Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan.
In eukaryotes, DNA is housed within the cell nucleus. Molecules required for the formation of a nucleus have been identified using in vitro systems with frog egg extracts and in vivo imaging of somatic cells. However, little is known about the physicochemical factors and conditions required for nuclear formation in mouse oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!