Mechanical forces play pivotal roles in regulating various cellular functions. Biomolecular motor protein-driven intracellular transportation is one example which is affected by mechanical forces, although the mechanism at molecular level is unknown. In this chapter, we describe deformation of microtubules under compressive stress and we show that such deformation of microtubules affects the kinetics of dynein-driven cargo transportation along the microtubules. The extent of alteration in the kinetics of dynein-driven transportation is found strongly dependent on the extent of deformation of microtubules under compressive stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1983-4_19 | DOI Listing |
Asian J Androl
December 2024
Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella (MMAF). Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement. Mammalian sperm-associated antigen 17 (SPAG17) encodes a conserved axonemal protein of cilia and flagella, forming part of the C1a projection of the central apparatus, with functions related to ciliary/flagellar motility, skeletal growth, and male fertility.
View Article and Find Full Text PDFPLoS Genet
December 2024
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America.
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches.
View Article and Find Full Text PDFElife
December 2024
Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility.
View Article and Find Full Text PDFBMJ Case Rep
December 2024
Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
Bardet-Biedl syndrome (BBS), an autosomal recessive ciliopathy with pleiotropic effects, manifests as a spectrum of anomalies involving multiple genes and affects fewer than 3,000 individuals in the USA. Due to its rarity and phenotypic variability, early diagnosis of BBS poses a significant challenge. Therefore, we aim to shed light on the intrafamilial phenotypic variation of BBS resulting from a variant by delineating the clinical presentation in two siblings.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Physics, University of California, Santa Barbara, CA 93106.
We study the structure and dynamics of the interface separating a passive fluid from a microtubule-based active fluid. Turbulent-like active flows power giant interfacial fluctuations, which exhibit pronounced asymmetry between regions of positive and negative curvature. Experiments, numerical simulations, and theoretical arguments reveal how the interface breaks up the spatial symmetry of the fundamental bend instability to generate local vortical flows that lead to asymmetric interface fluctuations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!