A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active Interphase Enables Stable Performance for an All-Phosphate-Based Composite Cathode in an All-Solid-State Battery. | LitMetric

High interfacial resistance and unstable interphase between cathode active materials (CAMs) and solid-state electrolytes (SSEs) in the composite cathode are two of the main challenges in current all-solid-state batteries (ASSBs). In this work, the all-phosphate-based LiFePO (LFP) and Li Al Ti (PO ) (LATP) composite cathode is obtained by a co-firing technique. Benefiting from the densified structure and the formed redox-active Li Fe Ti Al (PO ) (LFTAP) interphase, the mixed ion- and electron-conductive LFP/LATP composite cathode facilitates the stable operation of bulk-type ASSBs in different voltage ranges with almost no capacity degradation upon cycling. Particularly, both the LFTAP interphase and LATP electrolyte can be activated. The cell cycled between 4.1 and 2.2 V achieves a high reversible capacity of 2.8 mAh cm (36 µA cm , 60 °C). Furthermore, it is demonstrated that the asymmetric charge/discharge behaviors of the cells are attributed to the existence of the electrochemically active LFTAP interphase, which results in more sluggish Li kinetics and more expansive LFTAP plateaus during discharge compared with that of charge. This work demonstrates a simple but effective strategy to stabilize the CAM/SSE interface in high mass loading ASSBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202200266DOI Listing

Publication Analysis

Top Keywords

composite cathode
16
lftap interphase
12
cathode
5
active interphase
4
interphase enables
4
enables stable
4
stable performance
4
performance all-phosphate-based
4
composite
4
all-phosphate-based composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!