A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of Silico-Phospho-Aluminum Nanosheets by Adding Amino Acid and its Catalysis in the Conversion of Furfuryl Alcohol to Fuel Additives. | LitMetric

Synthesis of Silico-Phospho-Aluminum Nanosheets by Adding Amino Acid and its Catalysis in the Conversion of Furfuryl Alcohol to Fuel Additives.

ChemSusChem

State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.

Published: July 2022

Self-assembled spheres of silico-phospho-aluminum nanosheets were synthesized with the addition of l-arginine and evaluated as catalysts for the valorization of furfuryl alcohol to fuel additives. Adding the amino acid, a bio-derived additive, contributed to higher external specific surface area and more active sites, featuring a simple, environmentally friendly, and feasible strategy to regulate the growth of nanosheets. Herein, in the reaction of furfuryl alcohol with ethanol, the performance of silico-phospho-aluminum nanosheets was significantly improved compared with typical silicon phosphorus aluminum catalyst SAPO-34. The yield of ethyl levulinate with the use of silico-phospho-aluminum nanosheets was 7.8 times higher than for SAPO-34, and meanwhile the amount of undesirable byproduct diethyl ether was decreased by two orders of magnitude and negligibly produced compared with SAPO-34. Moreover, replacing part of aluminum isopropoxide with aluminum sulfate as aluminum source could introduce sulfate in situ in the process of catalyst synthesis and increase the amount of acid sites on the catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202200747DOI Listing

Publication Analysis

Top Keywords

silico-phospho-aluminum nanosheets
16
furfuryl alcohol
12
adding amino
8
amino acid
8
alcohol fuel
8
fuel additives
8
nanosheets
5
synthesis silico-phospho-aluminum
4
nanosheets adding
4
acid catalysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!