Recent Advances in Bimetallic Catalysts for Hydrogen Production from Ammonia.

Chem Rec

Interdiscipilinary Research Center for Refining & Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

Published: July 2022

The emerging concept of the hydrogen economy is facing challenges associated with hydrogen storage and transport. The utilization of ammonia as an energy (hydrogen) carrier for the on-site generation of hydrogen via ammonia decomposition has gained attraction among the scientific community. Ruthenium-based catalysts are highly active but their high cost and less abundance are limitations for scale-up application. Therefore, combining ruthenium with cheaper transition metals such as nickel, cobalt, iron, molybdenum, etc., to generate metal-metal (bimetallic) surfaces suitable for ammonia decomposition has been investigated in recent years. Herein, the recent trends in developing bimetallic catalyst systems, the role of metal type, support materials, promoter, synthesis techniques, and the investigations of the reaction kinetics and mechanism for ammonia decomposition have been reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.202200030DOI Listing

Publication Analysis

Top Keywords

ammonia decomposition
12
hydrogen
5
ammonia
5
advances bimetallic
4
bimetallic catalysts
4
catalysts hydrogen
4
hydrogen production
4
production ammonia
4
ammonia emerging
4
emerging concept
4

Similar Publications

Ammonia Decomposition Catalyzed by Co Nanoparticles Encapsulated in Rare Earth Oxide.

J Phys Chem Lett

January 2025

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.

View Article and Find Full Text PDF

Atomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.

View Article and Find Full Text PDF

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF

Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.

View Article and Find Full Text PDF

Electronic Substitution Effect on ESIPT-Driven pH and Amine Sensing: Exploring Mechanism.

Chem Asian J

January 2025

Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India.

It is required to have a more straightforward and easier way to check the quality of food to ensure the safety of the public health. The decomposition of meat protein results in ammonia and biogenic amines (BAs). Consequently, to evaluate the safety and quality of meat products throughout the storage, transit, and consumption depends on the sensitive detection of the released BAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!