It has been reported that oxidative stress plays a prominent role in diabetic macrovascular diseases. 3,4‑Dihydroxyacetophenone (3,4‑DHAP) has been found to have a variety of biological activities. However, few studies have assessed the antioxidant capacity of 3,4‑DHAP and the underlying mechanisms. Thus, the aim of the present study was to explore the effects of 3,4‑DHAP on oxidative stress in human umbilical vein endothelial cells (HUVECs). HUVECs were pre‑treated with 3,4‑DHAP and then exposed to high glucose conditions. Cell viability and cytotoxicity were measured using an MTT assay. Reactive oxygen species (ROS) levels were measured using an inverted fluorescence microscope and a fluorescent enzyme labeling instrument. Protein expression levels of nuclear factor E2‑related factor 2 (Nrf2), heme oxygenase‑1 (HO‑1), microtubule‑associated protein 1A/1B‑light chain 3 (LC3) and poly ADP‑ribose polymerase‑1 (PARP‑1) were measured using western blotting, and mRNA expression of Nrf2 and HO‑1 were measured through reverse transcription‑quantitative PCR (RT‑qPCR). Nrf2 nuclear translocation was evaluated using immunofluorescence analysis and autophagosomes were observed using transmission electron microscope (TEM). The results of the present study demonstrated that compared with the control group, cell viability of the high glucose group was reduced and cell cytotoxicity of the high glucose group was increased. ROS production in the high glucose group was clearly enhanced. In addition, high glucose upregulated Nrf2 and HO‑1 protein and mRNA expression levels. Nuclear translocation of Nrf2 in the high glucose group was also increased. The formation of autophagosomes in the high glucose group was also higher than that in the control group. Furthermore, LC3‑II/LC3‑I and PARP‑1 protein expression levels were increased after treatment with high glucose. However, compared to the high glucose group, 3,4‑DHAP (10 µmol/l) significantly enhanced cell viability. 3,4‑DHAP markedly decreased the production of ROS, increased Nrf2 and HO‑1 protein and mRNA expression levels, and promoted nuclear translocation of Nrf2 in HUVECs. In addition, 3,4‑DHAP promoted the formation of autophagosomes, and notably increased the protein expression levels of LC3‑II/LC3‑I and PARP‑1. Moreover, it was determined that compared to the 3,4‑DHAP group, treatment with 3,4‑DHAP and ML385 enhanced cell viability, and decreased ROS production, Nrf2 and HO‑1 protein and mRNA expression levels, nuclear translocation of Nrf2, and LC3‑II/LC3‑I and PARP‑1 protein expression levels. Collectively, the results of the present study showed that 3,4‑DHAP protected HUVECs against oxidative stress via regulation of the Nrf2/HO‑1 pathway, by increasing autophagy and promoting DNA damage repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073850PMC
http://dx.doi.org/10.3892/mmr.2022.12715DOI Listing

Publication Analysis

Top Keywords

high glucose
36
expression levels
28
glucose group
24
cell viability
16
protein expression
16
mrna expression
16
nrf2 ho‑1
16
nuclear translocation
16
oxidative stress
12
levels nuclear
12

Similar Publications

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Objective:  Type 2 diabetes is a metabolic disorder characterized by insulin resistance and hyperglycemia affecting many individuals worldwide. For effective management, adherence to recommended physician visits is important, along with lifestyle modification and pharmacological interventions. Regular doctor visits can improve adherence and help prevent complications.

View Article and Find Full Text PDF

Introduction: This study examines the effects of steam-flaked corn starter on pre-weaned Simmental calves' growth, immunity, and metabolism. Despite benefits shown in adult cattle, research on calves is limited. The goal is to optimize calf feeding for better growth, health, and nutrient use.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).

Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.

View Article and Find Full Text PDF

This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!