During the past decades micro-electromechanical microphones have largely taken over the market for portable devices, being produced in volumes of billions yearly. Because performance of current devices is near the physical limits, further miniaturization and improvement of microphones for mobile devices poses a major challenge that requires breakthrough device concepts, geometries, and materials. Graphene is an attractive material for enabling these breakthroughs due to its flexibility, strength, nanometer thinness, and high electrical conductivity. Here, we demonstrate that transfer-free 7 nm thick multilayer graphene (MLGr) membranes with diameters ranging from 85-155 to 300 μm can be used to detect sound and show a mechanical compliance up to 92 nm Pa, thus outperforming commercially available MEMS microphones of 950 μm with compliances around 3 nm Pa. The feasibility of realizing larger membranes with diameters of 300 μm and even higher compliances is shown, although these have lower yields. We present a process for locally growing graphene on a silicon wafer and realizing suspended membranes of patterned graphene across through-silicon holes by bulk micromachining and sacrificial layer etching, such that no transfer is required. This transfer-free method results in a 100% yield for membranes with diameters up to 155 μm on 132 fabricated drums. The device-to-device variations in the mechanical compliance in the audible range (20-20000 Hz) are significantly smaller than those in transferred membranes. With this work, we demonstrate a transfer-free method for realizing wafer-scale multilayer graphene membranes that is compatible with high-volume manufacturing. Thus, limitations of transfer-based methods for graphene microphone fabrication such as polymer contamination, crack formation, wrinkling, folding, delamination, and low-tension reproducibility are largely circumvented, setting a significant step on the route toward high-volume production of graphene microphones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100512 | PMC |
http://dx.doi.org/10.1021/acsami.2c03305 | DOI Listing |
J Invertebr Pathol
January 2025
Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ 85921, United States.
Captive, pelagic red crabs (Pleuroncodes planipes) had shortened lifespans and cutaneous black spots. Histologically, epidermal and mesenchymal cells had 3-5 µm diameter intranuclear inclusions, necrosis, vacuolation, and/or hyperplasia. The remaining organs were histologically unremarkable.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.
Background: To examine the feasibility and safety of the SENSEI drop-in gamma probe for robot-assisted, prostate-specific membrane antigen (PSMA)-radioguided salvage surgery (RGS) in lymph node or local oligorecurrent prostate cancer (PCa), detected via PSMA positron emission tomography/computed tomography (PET/CT).
Methods: The first thirteen patients with pelvic oligorecurrent PCa who underwent [Tc]Tc-PSMA-I&S RGS using the SENSEI drop-in gamma probe at the Martini-Klinik (February-June 2024) were retrospectively analyzed. Radioactivity measurements in counts per second (CPS) as absolute values or ratios (CPS of tumor specimens/mean CPS from the patients' benign tissues) were correlated with preoperative imaging and pathological findings (benign/malignant, lesion size).
Diagnostics (Basel)
January 2025
Division of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland.
Here, we describe the case of a 74-year-old male patient with a high-risk prostate carcinoma who underwent positron-emission tomography/computed tomography (PET/CT) with [Ga]Ga-prostate-specific membrane antigen ([Ga]Ga-PSMA-11) for staging. [Ga]Ga-PSMA-11 PET/CT detected an extensive area of increased tracer uptake at the prostatic level, involving both lobes. Additionally, a rounded lesion approximately 4 cm in diameter was identified in the celiac region adjacent to the stomach, exhibiting moderate tracer uptake.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Pharmacy, Vasile Goldis Western University of Arad, 310130 Arad, Romania.
Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Medical Technology, Prince of Songkla University, Hatyai 90110, Thailand.
Nanocomposites based on metal nanoparticles (MNP) prepared with mangosteen () peel extract-mediated biosynthesis of Ag/Zn have attracted considerable interest due to their potential for various practical applications. In this study, their role in developing antibacterial protection for rubber cotton gloves is investigated. The process of mangosteen-peel-extract-mediated biosynthesis produced Ag/Zn nanocomposites with respective diameters of 23.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!