AI Article Synopsis

  • The study analyzed how Remdesivir's active form (RTP) interacts with the RNA-dependent RNA Polymerase (RdRp) of the SARS-CoV-2 virus using molecular dynamics simulations.
  • The results confirmed that RTP maintained the binding interactions previously identified in experimental structures.
  • New analogues of RTP were designed, which not only bind more strongly to the RNA primer strand but may also effectively terminate primer strand growth due to their specific modifications.

Article Abstract

The binding of the active form of Remdesivir (RTP) to RNA-dependent RNA Polymerase (RdRp) of SARS-CoV-2 was studied using molecular dynamics simulation. The RTP maintained the interactions observed in the experimental cryo-EM structure. Next, we designed new analogues of RTP, which not only binds to the RNA primer strand in a similar pose as that of RTP, but also binds more strongly than RTP does as predicted by MM-PBSA binding energy. This suggest that these analogues might be able to covalently link to the primer strand as RTP, but their 3' modification would terminate the primer strand growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020840PMC
http://dx.doi.org/10.1016/j.cplett.2022.139638DOI Listing

Publication Analysis

Top Keywords

primer strand
12
active form
8
form remdesivir
8
rdrp sars-cov-2
8
molecular dynamics
8
rtp binds
8
rtp
6
unraveling binding
4
binding mechanism
4
mechanism active
4

Similar Publications

Dual-mode ultrasensitive detection of acute leukemia gene Pax-5a based on smart DNA programmed dendrimer.

Biosens Bioelectron

December 2024

State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.

Accurate and sensitive detection of Pax-5a gene is the basis of early diagnosis and prediction of acute leukemia. This research aims to develop a universal dual-mode sensing method enables ultrasensitive gene detection based on smart control of DNA amplification by nucleic acid beacons e to form programmed dendrimer. The Pax-5a target gene triggers the opening of smart gate hairpin probe (Hp), exposing the stem sequence as the primer to bind with padlock probe for rolling circle amplification (RCA).

View Article and Find Full Text PDF

DNA lesion-gated dumbbell nanodevices enable on-demand activation of the cGAS-STING pathway for enhancing cancer immunotherapy.

Chem Sci

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China

Utilizing the cGAS-STING pathway to combat immune evasion is one of the most promising strategies for enhancing cancer immunotherapy. However, current techniques for activating the cGAS-STING pathway often face a dilemma, mainly due to the balance between efficacy and safety. Here, we develop a uracil base lesion-gated dumbbell DNA nanodevice (UBLE) that allows on-demand activation and termination of the cGAS-STING pathway in tumor cells, thereby enhancing cancer immunotherapy.

View Article and Find Full Text PDF

CRISPR-Cas12a2-based rapid and sensitive detection system for target nucleic acid.

Int J Biol Macromol

December 2024

Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 20032, China. Electronic address:

Infectious diseases are extremely important public health issues, where the design of effective, rapid, and convenient detection platforms is critical. In this study, we coupled SuCas12a2, a novel Cas12 family RNA-targeting nuclease, with conventional PCR and recombinase polymerase amplification (RPA), respectively, to develop novel detection approaches, named PCR-SuCas12a2 and RPA-SuCas12a2. SuCas12a2 possesses collateral cleavage activity and cuts the additional single-stranded RNA (ssRNA) added to the reaction system once the ternary complex RNA-SuCas12a2-CRISPR RNA (crRNA) is formed.

View Article and Find Full Text PDF

Advanced Ligase Chain Reaction Strategy to Generate a Circular DNA Walker for Electrochemiluminescent Detection of Single Nucleotide Polymorphism.

Anal Chem

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

Single nucleotide polymorphism (SNP) primarily refers to DNA sequence polymorphism caused by variations in a single nucleotide, which is closely associated with many diseases such as genetic disorders and tumors. However, trace DNA mutants typically exist in a large pool of wild-type DNA, making it challenging to establish accurate and sensitive approaches for SNP detection. Herein, we developed an advanced ligase chain reaction (LCR) strategy to output the circular DNA walker for signal amplification, which realized accuracy and sensitive SNP detection based on the electrochemiluminescent (ECL) platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!