SARS-CoV-2 mutations acquired during serial passage in human cell lines are consistent with several of those found in recent natural SARS-CoV-2 variants.

Comput Struct Biotechnol J

Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.

Published: April 2022

Unlabelled: Since the outbreak of coronavirus disease (COVID-19) in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into diverse variants. Here, an early isolate of SARS-CoV-2 was serially passaged in multiple cell lines of human origin in triplicate, and selected mutations were compared to those found in natural SARS-CoV-2 variants. In the spike protein, Q493R and Q498R substitutions from passaged viruses were consistent with those in the B.1.1.529 (Omicron) variant. Y144del and H655Y substitutions from passaged viruses were also reported in B.1.1.7 (Alpha), P.1 (Gamma), and B.1.1.529 (Omicron) variants. Several single nucleotide polymorphisms (SNPs) found in first-passaged viruses have also been identified as selected mutation sites in serially passaged viruses. Considering the consistent mutations found between serially passaged SARS-CoV-2 and natural variants, there may be host-specific selective mutation patterns of viral evolution in humans. Additional studies on the selective mutations in SARS-CoV-2 experiencing diverse host environments will help elucidate the direction of SARS-CoV-2 evolution.

Importance: SARS-CoV-2 isolate (SARS-CoV-2/human/KOR/KCDC03-NCCP43326/2020) was serially passaged in A549, CaCO2, and HRT-18 cells in triplicate. After 12 times of serial passages in each cell lines, several consistent selected mutations were found on spike protein between the serially passaged SARS-CoV-2 in human cell lines and recent natural variants of SARS-CoV-2 like omicron. On the non-spike protein genes, selected mutations were more frequent in viruses passaged in Caco-2 and HRT-18 cells (Colon epithelial-like) than in those passaged in A549 cells (Lung epithelial-like). In addition, several SNPs identified after one round of passaging were consistently identified as the selected mutation sites in serially passaged viruses. Thus, mutation patterns of SARS-CoV-2 in certain host environments may provide researchers information to understand and predict future SARS-CoV-2 variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021118PMC
http://dx.doi.org/10.1016/j.csbj.2022.04.022DOI Listing

Publication Analysis

Top Keywords

serially passaged
24
cell lines
16
passaged viruses
16
sars-cov-2
13
sars-cov-2 variants
12
selected mutations
12
passaged
10
human cell
8
lines consistent
8
natural sars-cov-2
8

Similar Publications

Double Deletion of EP402R and EP153R in the Attenuated Lv17/WB/Rie1 African Swine Fever Virus (ASFV) Enhances Safety, Provides DIVA Compatibility, and Confers Complete Protection Against a Genotype II Virulent Strain.

Vaccines (Basel)

December 2024

European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain.

African swine fever virus (ASFV) is a devastating disease affecting domestic and wild suids and causing significant economic losses in the global pig industry. Attenuated modified live virus (MLV) vaccines are the most promising approaches for vaccine development. This study aimed to evaluate the safety and efficacy of four recombinant ASFV genotype II strains, derived from the non-hemadsorbing (non-HAD) attenuated isolate Lv17/WB/Rie1, through the single or simultaneous deletion of virulence-associated genes.

View Article and Find Full Text PDF

Background/objectives: Tonsil-derived mesenchymal stem cells (TMSCs) are in the limelight in regenerative medicine due to their high proliferation and differentiation potential. It is important to conduct studies to determine the optimal conditions for achieving the maximum yield while maintaining the optimal differentiation capacity of TMSCs.

Methods: This study explores the impact of serial subculture on TMSCs by analyzing gene expression at passages 2, 4, 6, and 8.

View Article and Find Full Text PDF

Historical Overview of Tsutsugamushi Disease in Japan before World War II.

Infect Chemother

December 2024

Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea.

Tsutsugamushi disease is a febrile mite-borne disease caused by . Before 1945, this disease had been prevalent in Niigata, Akita, and Yamagata prefectures for centuries, occurring in areas along major rivers in these prefectures every summer about a month after floods. The patients affected were farmers, possibly new settlers on reclaimed lands, who contracted the disease following bites of tiny red bugs.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!