Circular RNAs take crucial roles in several pathophysiological processes. The regulatory role and its underlying mechanisms of circ-ZNF609 in the heart remains largely unknown. Here, we report that circ-ZNF609 is upregulated during myocardial ischemia/reperfusion (I/R) remodeling. Knockdown of circ-ZNF609 protects against acute I/R injury and attenuates left ventricle dysfunction after I/R remodeling . , circ-ZNF609 regulates cardiomyocyte survival and proliferation via modulating the crosstalk between Hippo-YAP and Akt signaling. Mechanically, N-methyladenosine-modification is involved in the regulatory role of circ-ZNF609 on YAP. An in-depth study indicates that knockdown of circ-ZNF609 decreases the expression of YTHDF3 and further fine-tuned the accessibility of mRNA to YTHDF1 and YTHDF2 to regulate YAP expression. circ-ZNF609 knockdown represents a promising therapeutic strategy to combat the pathological process of myocardial I/R injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012977 | PMC |
http://dx.doi.org/10.34133/2022/9825916 | DOI Listing |
J Eval Clin Pract
February 2025
Department of Midwifery, Faculty of Health Sciences, Biruni University, Istanbul, Türkiye.
Introduction: The sense of smell is one of the most developed and important senses that forms the bond between the newborn and the mother and allows the newborn to reach the mother's breast. The sense of smell begins to form during intrauterine life, and the sense of smell can be a marking tool for a newborn baby, so that the baby can recognize both his mother and his immediate environment and develop his behaviour accordingly. This is necessary not only for feeding babies but also for them to feel safe and peaceful in their new environment.
View Article and Find Full Text PDFSci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFSci Rep
December 2024
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, Jiangsu, China.
Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.
Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!