Molecular interactions at identical transcriptomic locations or at proximal but non-overlapping sites can mediate RNA modification and regulation, necessitating tools to uncover these spatial relationships. We present nearBynding, a flexible algorithm and software pipeline that models spatial correlation between transcriptome-wide tracks from diverse data types. nearBynding can process and correlate interval as well as continuous data and incorporate experimentally derived or predicted transcriptomic tracks. nearBynding offers visualization functions for its statistics to identify colocalizations and adjacent features. We demonstrate the application of nearBynding to correlate RNA-binding protein (RBP) binding preferences with other RBPs, RNA structure, or RNA modification. By cross-correlating RBP binding and RNA structure data, we demonstrate that nearBynding recapitulates known RBP binding to structural motifs and provides biological insights into RBP binding preference of G-quadruplexes. nearBynding is available as an R/Bioconductor package and can run on a personal computer, making correlation of transcriptomic features broadly accessible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017189PMC
http://dx.doi.org/10.1016/j.crmeth.2021.100088DOI Listing

Publication Analysis

Top Keywords

rbp binding
16
rna structure
12
spatial correlation
8
rna modification
8
nearbynding
6
rna
5
binding
5
correlation statistics
4
statistics enable
4
enable transcriptome-wide
4

Similar Publications

Objectives: To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.

Methods: Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining.

View Article and Find Full Text PDF

As adaptors, catalysts, guides, messengers, scaffolds and structural components, RNAs perform an impressive array of cellular regulatory functions often by recruiting RNA-binding proteins (RBPs) to form ribonucleoprotein complexes (RNPs). While this RNA-RBP interaction network allows precise RNP assembly and the subsequent structural dynamics required for normal functions, RNA motif mutations may trigger the formation of aberrant RNP structures that lead to cell dysfunction and disease. Here, we provide our perspective on one type of RNA motif mutation, RNA gain-of-function mutations associated with the abnormal expansion of short tandem repeats (STRs) that underlie multiple developmental and degenerative diseases.

View Article and Find Full Text PDF

The crosstalk between the tumour immune microenvironment (TIME) and tumour cells promote immune evasion and resistance to immunotherapy in gastrointestinal (GI) tumours. Post-transcriptional regulation of genes is pivotal to GI tumours progression, and RNA-binding proteins (RBPs) serve as key regulators via their RNA-binding domains. RBPs may exhibit either anti-tumour or pro-tumour functions by influencing the TIME through the modulation of mRNAs and non-coding RNAs expression, as well as post-transcriptional modifications, primarily N6-methyladenosine (mA).

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.

View Article and Find Full Text PDF

Role of Vigilin and RACK1 in dengue virus- interactions.

mSphere

December 2024

Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.

Vigilin is a large and evolutionary conserved RNA-binding protein (RBP), which can interact with RNA through its KH domain. Vigilin is, therefore, a multifunctional protein reported to be associated with RNA transport and metabolism, sterol metabolism, chromosome segregation, carcinogenesis, and heterochromatin-mediated gene silencing. The receptor for activated C kinase 1 (RACK1) is another highly conserved protein involved in many cellular pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!