Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bubble point pressure ( ) is essential for determining petroleum production, simulation, and reservoir characterization calculations. The can be measured from the pressure-volume-temperature (PVT) experiments. Nonetheless, the PVT measurements have limitations, such as being costly and time-consuming. Therefore, some studies used alternative methods, namely, empirical correlations and machine learning techniques, to obtain the . However, the previously published methods have restrictions like accuracy, and some use specific data to build their models. In addition, most of the previously published models have not shown the proper relationships between the features and targets to indicate the correct physical behavior. Therefore, this study develops an accurate and robust correlation to obtain the applying the Group Method of Data Handling (GMDH). The GMDH combines neural networks and statistical methods that generate relationships among the feature and target parameters. A total of 760 global datasets were used to develop the GMDH model. The GMDH model is verified using trend analysis and indicates that the GMDH model follows all input parameters' exact physical behavior. In addition, different statistical analyses were conducted to investigate the GMDH and the published models' robustness. The GMDH model follows the correct trend for four input parameters (gas solubility, gas specific gravity, oil specific gravity, and reservoir temperature). The GMDH correlation has the lowest average percent relative error, root mean square error, and standard deviation of 8.51%, 12.70, and 0.09, respectively, and the highest correlation coefficient of 0.9883 compared to published models. The different statistical analyses indicated that the GMDH is the first rank model to accurately and robustly predict the .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026061 | PMC |
http://dx.doi.org/10.1021/acsomega.2c00651 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!