The extensive use of organophosphorus pesticides in agriculture poses a high risk to human health and has boosted the demands for developing sensitive monitoring methods. Herein, we developed a facile and sensitive method for isocarbophos detection based on the remarkable fluorescence enhancement of pyrene during host-guest interaction of β-cyclodextrin polymer (β-CDP) and pyrene. The 3'-pyrene-labeled isocarbophos aptamer could be cleaved by exonuclease I to obtain free pyrene that was tagged on mononucleotides, which could enter the hydrophobic cavity of β-CDP, resulting in a prominent fluorescence enhancement. While the target isocarbophos was added, aptamer could undergo a conformational change into a hairpin complex, which prevented the cleavage and host-guest interaction because of the steric hindrance, leading to a weak fluorescence. The isocarbophos has been sensitively and selectively analyzed by detecting the system fluorescence intensity with a detection limit as low as 1.2 μg/L. In addition, we have verified the ability of our proposed method in real sample detection from fruit extract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026021 | PMC |
http://dx.doi.org/10.1021/acsomega.1c07295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!