Technology Overview of Fast Pyrolysis of Lignin: Current State and Potential for Scale-Up.

ChemSusChem

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich HCI E 127, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.

Published: July 2022

Lignin is an abundant natural polymer obtained from lignocellulosic biomass and rich in aromatic substructures. When efficiently depolymerized, it has great potential in the production of value-added chemicals. Fast pyrolysis is a promising depolymerization method, but current studies focus mainly on small quantities of lignin. In this Review, to determine the potential for upscaling, systems used in the most relevant unit operations of fast pyrolysis of lignin are evaluated. Fluidized-bed reactors have the most potential. It would be beneficial to combine them with the following: slug injectors for feeding, hot particle filters, cyclones, and fractional condensation for product separation and recovery. Moreover, upgrading lignin pyrolysis oil would allow the necessary quality parameters for particular applications to be reached.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400966PMC
http://dx.doi.org/10.1002/cssc.202200343DOI Listing

Publication Analysis

Top Keywords

fast pyrolysis
12
pyrolysis lignin
8
lignin
5
technology overview
4
overview fast
4
pyrolysis
4
lignin current
4
current state
4
potential
4
state potential
4

Similar Publications

In this study, the effect of additives on particulate matter (PM) and flue gas emissions during the co-combustion of poultry waste and pine woodchips in air and oxy-fuel combustion conditions was examined. The appropriate additive for the fuel mixture to reduce PM emissions has been selected by a fast screening method based on thermogravimetric analysis (TGA) in oxygen environment. Among the additives CaHPO, MgCO, MnCO, MgPO, kaolin, CaO, and Zn, the most suitable ones were determined as Zn and MgCO.

View Article and Find Full Text PDF

The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.

View Article and Find Full Text PDF

Hydrogen production from biomass pyrolysis is attractive since it allows for green hydrogen production through feedstock and thermal conversion. However, the key limiting factors for hydrogen production are the high oxygen content, uneven heating of biomass pellets during the slow heating process, and insufficient depolymerization due to low reaction temperatures (low gas yields and low hydrogen content). To address these challenges, fast pyrolysis of super Arundo in NaOH-NaCO molten salt was carried out in this paper at 450 °C, 550 °C and 650 °C.

View Article and Find Full Text PDF

Qualitative and Quantitative Analysis of Tire Wear Particles (TWPs) in Road Dust Using a Novel Mode of Operation of TGA-GC/MS.

Environ Sci Technol Lett

January 2025

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom.

Detecting and quantifying tire wear particles (TWPs) in the environment pose a unique environmental challenge due to their chemical complexity. There are emerging concerns around TWPs due to their potential high numbers of particles released, outnumbering microplastics, as well as the leaching of toxic additives such as 6-PPD which has been linked to the death of salmon even when present at very low levels (<0.1 μg/L).

View Article and Find Full Text PDF

Nitrogen doping turns carbonaceous materials into fast-reacting catalysts for reductive dechlorination.

Environ Pollut

January 2025

Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark. Electronic address:

Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!