Applications that provide versatile, high temperature warnings require the development of thermochromic materials based on solid-state oxides. To boost the visible thermochromic properties, a fundamental approach to reveal the unclear roles of local structure on band structure modulation should be considered by scrutinizing the thermal motion of phonon modes. Herein, we demonstrate that selective coupling of intra-layer phonon modes intensifies the visible thermochromism of layered oxides α-MoO. As a result of thermally induced band gap reduction in α-MoO, the observed color reversibly changes from white at 25 °C to yellow at 300 °C owing to a red shift of the absorption edge with an increase of temperature. This high-temperature thermochromism is attributed to the anisotropic change of layered α-MoO crystal structures characterized by synchrotron X-ray diffraction. Notably, quantitative characterizations combined with theoretical calculations reveal that the cooperative coupling of active Raman modes in intra-layer [MoO] octahedra are responsible for the band gap reduction at high temperature; this defies the general belief regarding the origin of visible thermochromism in layered oxides as the modulation of a van der Waals inter-layer distance. These original results can aid the development of a new strategy to further intensify high-temperature thermochromism by anion doping for highly sensitive temperature-indicating applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2mh00090c | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Physics, Deshbandhu College (University of Delhi), New Delhi 110019, India.
The analysis of Raman and Infrared (IR) phonons in monolayered tetragonal (Sr, Ba)HfO compounds, which exhibit D symmetry and belong to the I4/mmm phase of space group 139 with Z = 2, has been conducted using normal coordinates. The SrHfO and BaHfO compounds are the first members of the Ruddlesden-Popper (RP) series denoted as (Sr, Ba)HfO with n = 1. Nine Short-Range Force Constants (SRFC) have been included in theoretical calculations to analyze the optical phonons of SrHfO and BaHfO compounds within the I4/mmm phase.
View Article and Find Full Text PDFSci Rep
January 2025
TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt.
A wealth of details regarding an individual's state of health, like a person's respiratory and metabolic functioning, can be studied by analyzing the volatile molecules and atoms in human exhaled breath. Besides, the salinity of seawater is a crucial factor in understanding its characteristics because any variation in the salinity of seawater represents the variations in the hydrological, biological, and chemical distributions. In this paper, a symmetrical one-dimensional phononic structure is theoretically designed using two symmetrical crystals separated with a defective cavity.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.
Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Electronics, Hunan University, Changsha 410082, China.
Two-dimensional (2D) Janus structures with the breaking of out-of-plane mirror symmetry can induce many interesting physical phenomena, and have attracted widespread attention. Herein, we propose a MoPS monolayer with mirror asymmetry, identified by first-principles structural search calculations, which demonstrates high thermodynamic and dynamic stability. Our findings reveal that Mo 4d-orbitals dominate the metallicity, significantly enhancing the density of states near the Fermi level due to Van Hove singularities (VHSs), leading to the existence of phonon-mediated superconductivity.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, The M S University of Baroda, Near Railway station, Sayajigunj, Vadodara, 390002, INDIA.
Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional (2D) materials. Numerous theoretical and experimental studies have significantly contributed to analysing the properties of transition metal dichalcogenides (TMDs), known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2 and MoSe2/WSe2/MoSe2 vdW heterostructures using first-principles based density functional theory calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!