High gravity technology, as a process intensification technology, has demonstrated the great advantages in the field of gas purification on account of its excellent mass transfer efficiency and energy-efficient, but it is rarely applied in the field of nitrogen oxides (NOx) purification of marine diesel engine exhaust. In this paper, a high-gravity bowl-shaped-disk rotating bed (HBRB) without catalytic was designed for diesel exhaust after-treatment. A diesel oxidation catalyst (DOC) was installed in the front of the HBRB to regenerate more nitrogen dioxide (NO) easily reduced by urea. A bench test of a 6-cylinder marine diesel engine with the HBRB was carried out. The effects of the HBRB speeds, urea concentrations, and engine operating conditions on NOx purification efficiency in engine exhaust were experimentally investigated. The experimental result indicates that the maximum NOx removal efficiency of the HBRB can reach 69.1%. The improvement of the NOx removal efficiency is not obvious at the HBRB speed of over 1500 r/min. The pre-oxidation degree of nitric oxide (NO) and urea concentration largely affect the NOx removal efficiency. The HBRB has great potential in marine diesel engine exhaust denitration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-20272-4 | DOI Listing |
Water Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
The fuel system serves as the core component of marine diesel engines, and timely and effective fault diagnosis is the prerequisite for the safe navigation of ships. To address the challenge of current data-driven fault-diagnosis-based methods, which have difficulty in feature extraction and low accuracy under small samples, this paper proposes a fault diagnosis method based on digital twin (DT), Siamese Vision Transformer (SViT), and K-Nearest Neighbor (KNN). Firstly, a diesel engine DT model is constructed by integrating the mathematical, mechanism, and three-dimensional physical models of the Medium-speed diesel engines of 6L21/31 Marine, completing the mapping from physical entity to virtual entity.
View Article and Find Full Text PDFChemosphere
January 2025
Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 88049-900, P. O. Box 476, Florianopolis, SC, Brazil. Electronic address:
The effect of the in vitro acute exposure to diesel oil (0.001%, 0.01%, 0.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada. Electronic address:
Economic development, marine transportation, and oil exploration are all activities that are increasing in the Arctic region, and there is concern regarding increased oil-related contaminants entering this sensitive environment. Polycyclic aromatic compounds (PACs) are the main chemical constituents in oil-related contaminants and have been detected in wildlife species following both acute and chronic exposure. In 2020, an oil spill occurred in Kaikopok Bay near Postville, NL, Canada.
View Article and Find Full Text PDFSci Rep
December 2024
Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
Real-world emissions of particulate matter (PM) and smoke opacity were studied for an older-model diesel pickup truck during four types of driving tests, namely fixed-point test, snap-acceleration test, road test, and hill road test (uphill/downhill). A portable emissions measurement system (PEMS) and an opacimeter were used to measure real-time concentrations of PM and smoke opacity, respectively, and simultaneously. Correlation analysis showed a significant positive association between PM and opacity, suggesting the feasibility of using an opacimeter to estimate PM mass emissions from diesel vehicles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!