Silymarin-Encapsulated Xanthan Gum-Stabilized Selenium Nanocarriers for Enhanced Activity Against Amyloid Fibril Cytotoxicity.

AAPS PharmSciTech

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, A Transit Campus at Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.

Published: April 2022

The accumulation of amyloid-beta at the neuronal sites is a major pathological hallmark involved in the etiology of Alzheimer's disease. To reduce the Aβ-induced neuronal cytotoxicity, selenium nanoparticles and silymarin were fabricated in a single polysaccharide matrix for dual antioxidant and Aβ fibril disaggregation activity. These nanoparticles were further stabilized by an exopolysaccharide xanthan gum. The nanoparticles were fabricated to reduce the amyloid-induced cytotoxicity in SH-SY5Y cells. A three-step method employing redox reaction of sodium selenite and ascorbic acid has been adopted for the synthesis of selenium nanoparticles. Consequently, xanthan gum powder was added to impart stability to the nanocarriers. The nanoparticles exhibited a particle size of 119.2 ± 2.8 nm, zeta potential of - 35.4 ± 3.8 mV, and % EE of 87.7 ± 2.23. HR-TEM with EDX analysis confirmed the presence of spherical nanoparticles. An in vitro drug release study exhibited 89.33 ± 5.4% release of silymarin from nanocarriers and was able to scavenge 90% free radicals of DPPH reagent. The thioflavin T (ThT) fibrillation kinetics study showed that the nanoparticles elicited maximum disaggregation of Aβ fibrils that was depicted by the quenched fluorescence intensity signal. The cell viability results revealed that the highest neuroprotection activity was observed in the cell group treated with SLY-XG-Se against Aβ -induced toxicity. The nanoparticles were able to internalize in SH-SY5Y cells. Our findings showed that the nanocarrier elicited anti-aggregation efficacy in neuronal cell lines and mitigated the Aβ-induced cytotoxicity, which represents the prospects of neuroprotection involved in the therapeutics of AD.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-022-02274-0DOI Listing

Publication Analysis

Top Keywords

nanoparticles
8
selenium nanoparticles
8
xanthan gum
8
sh-sy5y cells
8
silymarin-encapsulated xanthan
4
xanthan gum-stabilized
4
gum-stabilized selenium
4
selenium nanocarriers
4
nanocarriers enhanced
4
enhanced activity
4

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON) is an ocular mitochondrial disease that involves the impairment of mitochondrial complex I, which is an important contributor to blindness among young adults across the globe. However, the disorder has no available cures, since the approved drug idebenone for LHON in Europe relies on bypassing complex I defects rather than fixing them. Herein, mRNA-loaded nanoparticle (mNP)-engineered mitochondria (mNP-Mito) were designed to replace dysfunctional mitochondria with the delivery of exogenous mitochondria, normalizing the function of complex I for treating LHON.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!