Piezoelectric inkjet printing of tyrosinase (polyphenol oxidase) enzyme on atmospheric plasma treated polyamide fabric.

Sci Rep

Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business/The Swedish School of Textiles, University of Borås, 501 90, Borås, Sweden.

Published: April 2022

Tyrosinase enzyme was digitally printed on plasma pretreated polyamide-6,6 fabric using several sustainable technologies. Ink containing carboxymethyl cellulose was found to be the most suitable viscosity modifier for this enzyme. Before and after being deposited on the fabric surface, the printed inks retained enzyme activity of 69% and 60%, respectively, compared to activity prior printing process. A good number of the printed enzyme was found to be strongly adsorbed on the fabric surface even after several rinsing cycles due to surface activation by plasma treatment. Rinsed out fabrics retained a maximum activity of 34% resulting from the well-adsorbed enzymes. The activity of tyrosinase on printed fabrics was more stable than ink solution for at least 60 days. Effects of pH, temperature and enzyme kinetics on ink solution and printed fabrics were assessed. Tyrosinase printed synthetic fabrics can be utilized for a range of applications from biosensing and wastewater treatment to cultural heritage works.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043184PMC
http://dx.doi.org/10.1038/s41598-022-10852-2DOI Listing

Publication Analysis

Top Keywords

fabric surface
8
tyrosinase printed
8
printed fabrics
8
ink solution
8
enzyme
6
printed
6
piezoelectric inkjet
4
inkjet printing
4
tyrosinase
4
printing tyrosinase
4

Similar Publications

Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.

View Article and Find Full Text PDF

In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.

View Article and Find Full Text PDF

Optimizing thermal and thermal-alkaline pretreatments for polylactic acid biodegradation by Amycolatopsis orientalis and Amycolatopsis thailandensis.

Bioresour Technol

January 2025

BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium.

Environmental pollution from packaging, has led to a need for sustainable alternatives. This study investigates the biodegradation of polylactic acid (PLA) by Amycolatopsis orientalis and Amycolatopsis thailandensis after thermal and thermal-alkaline pretreatments. The biodegradation was assessed based on weight loss, CO evolution, carbon balance analysis and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Flexible and Durable Conducting Fabric Electrodes for Next-Generation Wearable Supercapacitors.

ACS Appl Mater Interfaces

January 2025

Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.

This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.

View Article and Find Full Text PDF

Constructing an Organic-Inorganic Hybrid Solid-Electrolyte Interface In Situ via an Organo-Polysulfide Electrolyte Additive for Lithium-Sulfur Batteries.

ACS Appl Mater Interfaces

January 2025

School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, China.

Lithium (Li) metal's extremely high specific energy and low potential make it critical for high-performance batteries. However, uncontrolled dendrite growth and an unstable solid-electrolyte interphase (SEI) during repeated cycling still seriously hinder its practical application in Li metal batteries. Herein, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer using two kinds of organo-polysulfides with different sulfur chain lengths [bis(3-(triethoxysilyl)propyl)disulfide (Si-O-2S) and bis(3-(triethoxysilyl)propyl)tetrasulfide (Si-O-4S)] as the additives in the electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!