After a drug molecule enters clinical trials, there are primarily three levers to enhance probability of success: patient selection, dose selection and choice of combination agents. Of these, dose selection remains an under-appreciated aspect in oncology drug development despite numerous peer-reviewed publications. Here, we share practical challenges faced by the biopharmaceutical industry that reduce the willingness to invest in dose finding for oncology drugs. First, randomized dose finding admittedly slows down clinical development. To reduce the size of dose finding study, trend in exposure vs. tumor-size analysis can be assessed, instead of a statistical test for non-inferiority between multiple doses. Second, investment in testing a lower dose when benefit-risk at the higher dose is sufficient for regulatory approval (i.e., efficacy at the higher dose is better than standard of care and safety is acceptable) is perceived as low priority. Changing regulatory landscape must be considered to optimize dose in pre-marketing setting as post-marketing changes in dose can be commercially costly. Third, the risk of exposing patients to subtherapeutic exposures with a lower dose should be assessed scientifically instead of assuming a monotonic relationship between dose and efficacy. Only the doses which are expected to be at the plateau of dose/exposure-response curve should be investigated in Phase 1b/2. Overall, changing the perceptions that have been impeding investment in dose finding in oncology requires pragmatic discourse among biopharmaceutical industry, regulatory agencies and academia. These perceptions should also not deter dose finding for recently emerging modalities, including BITEs and CART cell therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314272 | PMC |
http://dx.doi.org/10.1007/s11095-022-03263-5 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea.
The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
Background: Minimizing the duration of mechanical ventilation is one of the most important therapeutic goals during the care of preterm infants at neonatal intensive care units (NICUs). The rate of extubation failure among preterm infants is between 16% and 40% worldwide. Numerous studies have been conducted on the assessment of extubation suitability, the optimal choice of respiratory support around extubation, and the effectiveness of medical interventions.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
EMAT, University of Antwerp, Groenenborgerlaan 171 2020, Antwerp, Belgium.
The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the resolution limit. Here, we explore whether we have to accept this or can progress further in this area.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
A novel 2'-α-fluoro-2'-β--(fluoromethyl) purine nucleoside phosphoramidate prodrug has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp8) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (). The cryo-electron microscopy structure of the C-RTC: complex was also determined.
View Article and Find Full Text PDFNeurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!