Background: Iron is used to alter macrophage phenotypes and induce tumor cell death. Iron oxide nanoparticles can induce macrophage polarization into the M1 phenotype, which inhibits tumor growth and can dissociate into iron ions in macrophages.
Objective: In this study, we proposed to construct high expression of Ferroportin1 macrophages as carriers to deliver Fe3O4-nanoparticles and iron directly to tumor sites.
Methods: Three sizes of FeO-nanoparticles with gradient concentrations were used. The migration ability of iron-carrying macrophages was confirmed by an in vitro migration experiment and monocyte chemoattractant protein-1 detection. The release of iron from macrophages was confirmed by determining their levels in the cell culture supernatant, and we constructed a high expression of ferroportin strain of macrophage lines to increase intracellular iron efflux by increasing membrane transferrin expression. FeO-NPs in Ana-1 cells were degraded in lysosomes, and the amount of iron released was correlated with the expression of ferroportin1.
Results: After FeO-nanoparticles uptake by macrophages, not only polarized macrophages into M1 phenotype, but the nanoparticles also dissolved in the lysosome and iron were released out of the cell. FPN1 is the only known Fe transporter; we use a Lentiviral vector carrying the FPN1 gene transfected into macrophages, has successfully constructed Ana-1-FPN1 cells, and maintains high expression of FPN1. Ana-1-FPN1 cells increase intracellular iron release. FeO-nanoparticles loaded with engineered Ana-1 macrophages can act as a "reservoir" of iron.
Conclusion: Our study provides proof of strategy for FeO-NPs target delivery to the tumor microenvironment. Moreover, increase of intracellular iron efflux by overexpression of FPN1, cell carriers can act as a reservoir for iron, providing the basis for targeted delivery of FeO-NPs and iron ions in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1567201819666220426085450 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFAlthough iron deficiency anemia is common, interpreting iron laboratory test results can be challenging in patients with comorbidities. We aimed to study the accuracy of common iron biomarkers compared with bone marrow iron staining in a large retrospective dataset of hematological patients. We collected from 6610 patients (median age 66 years) results of iron staining, with their concurrent ferritin, transferrin saturation, soluble transferrin receptor, transferrin, hemoglobin, and mean red blood cell volume results from Helsinki University Hospital electronic health records.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.
View Article and Find Full Text PDFNew Phytol
January 2025
North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA.
Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear. To explore this, we performed a microcosm study on Pinus taeda roots inoculated with Suillus cothurnatus treated with +/-Fe-coated sand, +/-organic matter, and a gradient of NHNO concentrations.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!