Background: Chemoresistance continues to limit the recovery of patients with cancer. New strategies, such as combination therapy or nanotechnology, can be further improved.

Objective: In this study, we applied the computational strategy by exploiting two databases (CellMiner and Prism) to sort out the cell lines sensitive to both anti-cancer drugs, paclitaxel (PTX) and dihydroartemisinin (DHA); both of which are potentially synergistic in several cell lines.

Methods: The combination of PTX and DHA was screened at different ratios to select the optimal ratio that could inhibit lung adenocarcinoma NCI-H23 the most. To further enhance therapeutic efficacy, these combinations of drugs were incorporated into a nanosystem.

Results: At a PTX:DHA ratio of 1:2 (w/w), the combined drugs obtained the best combination index (0.84), indicating a synergistic effect. The drug-loaded nanoparticles sized at 135 nm with the drug loading capacity of 15.5 ± 1.34 and 13.8 ± 0.56 corresponding to DHA and PTX, respectively, were used. The nano-sized particles improved drug internalization into the cells, resulting in the significant inhibition of cell growth at all tested concentrations (p < 0.001). Additionally, α-tubulin aggregation, DNA damage suggested the molecular mechanism behind cell death upon PTX-DHA-loaded nanoparticle treatment. Moreover, the rate of apoptosis increased from approximately 5% to more than 20%, and the expression of apoptotic proteins changed 4 and 3 folds corresponding to p-53 and Bcl-2, respectively.

Conclusion: This study was designed thoroughly by screening cell lines for the optimization of formulations. This novel approach could pave the way for the selection of combined drugs for precise cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201819666220426092538DOI Listing

Publication Analysis

Top Keywords

cell lines
8
combined drugs
8
cell
5
application computational
4
computational screening
4
screening tools
4
tools nanotechnology
4
nanotechnology enhanced
4
enhanced drug
4
drug synergism
4

Similar Publications

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!