Vascular plants account for 93% of Earth's terrestrial flora. Xylem and phloem, vital for transporting water and nutrients through the plant, unite this diverse clade. Three-dimensional arrangements of these tissues (vascular architecture) are manifold across living and extinct species. However, the evolutionary processes underlying this variation remain elusive. Using ferns, a diverse clade with multiple radiations over their 400-million-year history, we synthesized data across 3339 species to explore the tempo and mode of vascular evolution and to contextualize dynamics of phenotypic innovation during major fern diversification events. Our results reveal three paradigm shifts in our understanding of fern vascular evolution. (i) The canonical theory on the stepwise and unidirectional evolution of vascular architecture does not capture the complexities of character evolution among ferns. Rather, a new model permitting additional transitions, rate heterogeneity and multiple reversions is more likely. (ii) Major shifts in vascular architecture correspond to developmental changes in body size, not regional water availability. (iii) The early Carboniferous radiation of crown-group ferns was characterized by an explosion of phenotypic innovation. By contrast, during the Cretaceous and Cenozoic rise of eupolypods, rates of vascular evolution were dramatically low and seemingly decoupled from lineage diversification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043699 | PMC |
http://dx.doi.org/10.1098/rspb.2021.2209 | DOI Listing |
Int J Mol Sci
December 2024
National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., 117997 Moscow, Russia.
Despite the increasing number of placenta accreta spectrum (PAS) cases in recent years, its impact on neonatal outcomes and respiratory morbidity, as well as the underlying pathogenetic mechanism, has not yet been extensively studied. Moreover, no study has yet demonstrated the effectiveness of antenatal corticosteroid therapy (CT) for the prevention of respiratory distress syndrome (RDS) in newborns of mothers with PAS at the molecular level. In this regard, microRNA (miRNA) profiling by small RNA deep sequencing and quantitative real-time PCR was performed on 160 blood plasma samples from preterm infants (gestational age: 33-36 weeks) and their mothers who had been diagnosed with or without PAS depending on the timing of the antenatal RDS prophylaxis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia.
Constructing artificial tertiary lymphoid structures (TLSs) opens new avenues for advancing cancer immunotherapy and personalized medicine by creating controllable immune niches. Mesenchymal stromal cells (MSCs) offer an ideal stromal source for such constructs, given their potent immunomodulatory abilities and accessibility. In this study, we explored the potential of adipose-derived MSCs to adopt TLS-supportive phenotypes and facilitate lymphocyte organization.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo 113-8677, Japan.
Background/objectives: Superficial esophageal cancer is diagnosed by evaluating the vascular architecture, including dilation, tortuosity, caliber change, and shape, of a lesion. However, this diagnosis is subjective and requires extensive experience. Endoscopically distinguishing squamous intraepithelial neoplasia (SIN) from esophageal cancer is difficult.
View Article and Find Full Text PDFJ Adv Res
January 2025
Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:
Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
Over the past two decades, rapid advancements in magnetic resonance technology have significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), far surpassing its initial capabilities. Beyond mapping brain functional architecture at unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled several novel analytical strategies that can potentially improve the sensitivity and neuronal specificity of fMRI. With small voxels, one can sample from different levels of the vascular hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic changes from parenchymal to pial vessels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!