Highly efficient solar-to-thermal conversion is desired for the renewable energy technologies, such as solar thermo-photovoltaics and solar thermo-electric systems. In order to maximize the energy conversion efficiency, solar-selective absorbers are essential with its absorption characteristics specially tailored for solar applications. Here, we propose a wideband spectral-selective absorber based on three-dimensional (3D) nanostructured hyperbolic metamaterial (HMM), which can realize near-unity absorption across the UV and NIR spectral ranges. Moreover, the optical topological transition (OTT) of iso-frequency surface (IFS) is manipulated to selectively enhance light absorption in the entire solar spectrum, crucial for improved energy utilization. Impressive solar-to-thermal conversion efficiency of 95.5% has been achieved. Particularly, such superior properties can be retained well even over a wide range of incident angles. These findings open new avenues for designing high-performance solar thermal devices, especially in the fields related to solar energy harvesting.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.451849DOI Listing

Publication Analysis

Top Keywords

solar-to-thermal conversion
8
conversion efficiency
8
solar
7
nanostructured multilayer
4
multilayer hyperbolic
4
hyperbolic metamaterials
4
metamaterials high
4
high efficiency
4
efficiency selective
4
selective solar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!