Photonic neural network accelerators (PNNAs) have been lately brought into the spotlight as a new class of custom hardware that can leverage the maturity of photonic integration towards addressing the low-energy and computational power requirements of deep learning (DL) workloads. Transferring, however, the high-speed credentials of photonic circuitry into analogue neuromorphic computing necessitates a new set of DL training methods aligned along certain analogue photonic hardware characteristics. Herein, we present a novel channel response-aware (CRA) DL architecture that can address the implementation challenges of high-speed compute rates on bandwidth-limited photonic devices by incorporating their frequency response into the training procedure. The proposed architecture was validated both through software and experimentally by implementing the output layer of a neural network (NN) that classifies images of the MNIST dataset on an integrated SiPho coherent linear neuron (COLN) with a 3dB channel bandwidth of 7 GHz. A comparative analysis between the baseline and CRA model at 20, 25 and 32GMAC/sec/axon revealed respective experimental accuracies of 98.5%, 97.3% and 92.1% for the CRA model, outperforming the baseline model by 7.9%, 12.3% and 15.6%, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.452803 | DOI Listing |
J Am Coll Cardiol
December 2024
UCL MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom; Centre for Inherited Heart Muscle Conditions, Cardiology Department, Royal Free Hospital, London, United Kingdom. Electronic address:
Background: Aircraft noise is a growing concern for communities living near airports.
Objectives: This study aimed to explore the impact of aircraft noise on heart structure and function.
Methods: Nighttime aircraft noise levels (L) and weighted 24-hour day-evening-night aircraft noise levels (L) were provided by the UK Civil Aviation Authority for 2011.
Viruses
November 2024
Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.
Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
Addressing the issue of excessive manual intervention in discharging fermented grains from underground tanks in traditional brewing technology, this paper proposes an intelligent grains-out strategy based on a multi-degree-of-freedom hybrid robot. The robot's structure and control system are introduced, along with analyses of kinematics solutions for its parallel components and end-effector speeds. According to its structural characteristics and working conditions, a visual-perception-based motion control method of discharging fermented grains is determined.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
With the advancement of service robot technology, the demand for higher boundary precision in indoor semantic segmentation has increased. Traditional methods of extracting Euclidean features using point cloud and voxel data often neglect geodesic information, reducing boundary accuracy for adjacent objects and consuming significant computational resources. This study proposes a novel network, the Euclidean-geodesic network (EGNet), which uses point cloud-voxel-mesh data to characterize detail, contour, and geodesic features, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!