The simulation of large-area diffractive optical elements (DOEs) is challenging when non-paraxial propagation and coupling effects between neighboring structures shall be considered. We developed a novel method for the farfield simulation of DOEs, especially computer-generated holograms (CGHs) with lateral feature sizes in the wavelength range. It uses a machine learning approach to predict the optical function based on geometry parameters. Therefore, training data are calculated by physical simulation methods to create a linear regression model. With the trained model a very fast computation of the farfield is possible with high conformity to results of rigorous methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.453731 | DOI Listing |
Adv Mater
December 2024
Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, 150080, P. R. China.
Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT).
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
Based on our previous study [Wang et al., J. Chem.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China.
Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens assisted microscopic imaging system was built to analyze the imaging characteristics of any shape of microparticle lens. With this model, we simulated the resolution of a conventional objective lens, a microsphere lens and a hollow microsphere lens, which verified the correctness of our simulation model and demonstrated the super-resolution imaging ability of microsphere lenses.
View Article and Find Full Text PDFNanophotonics
November 2024
College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China.
Flexible and diverse manipulation of electromagnetic (EM) waves in half space (reflection or transmission) has facilitated strong aspiration toward full-space wave control. However, it remains challenging to achieve independent amplitude and phase control, which seriously hinder the real-world applications. Herein, an innovative strategy of trifunctional metasurface is proposed to independently and simultaneously manipulate the amplitude and phase of circular polarized waves in full space.
View Article and Find Full Text PDFNanophotonics
September 2024
Institute of Modern Optics, Nankai University, Tianjin, China.
Multi-resonant metasurfaces are of great significance in the applications of multi-band nanophotonics. Here, we propose a novel metasurface design scheme for simultaneously supporting quasi-bound states in continuum (QBIC) and other resonant modes, in which QBIC resonance is generated by mirror or rotational symmetry breaking in oligomers while other resonant modes can be simultaneously excited by rationally designing the shapes of meta-atoms within oligomers. As an example, the simultaneous excitation of QBIC and anapole modes are demonstrated in a dimer metasurface composed of asymmetric dumbbell-shaped apertures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!