Non-volatile multilevel optical memory is an urgent needed artificial component in neuromorphic computing. In this paper, based on ferroelectric based electrostatic doping (Fe-ED) and optical readout due to plasma dispersion effect, we propose an electrically programmable, multi-level non-volatile photonics memory cell, which can be fabricated by standard complementary-metal-oxide-semiconductor (CMOS) compatible processes. HfZrO (HZO) film is chosen as the ferroelectric ED layer and combines with polysilicon layers for an enhanced amplitude modulation between the carrier accumulation and the confined optical field. Insertion loss below 0.4 dB in erasing state and the maximum recording depth of 9.8 dB are obtained, meanwhile maintaining an extremely low dynamic energy consumption as 1.0-8.4 pJ/level. Those features make this memory a promising candidate for artificial optical synapse in neuromorphic photonics and parallel computing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.456048 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.
Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Technology, University of the National Education Commission, Podchorążych 2, 30-084 Kraków, Poland.
In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
State Key Laboratory of Wide-Bandgap Semiconductor Devices and lntegrated Technology, School of Microelectronics, Xi'an University of Electronic Science and Technology, Xi'an 710071, China.
This paper proposes and designs a silicon-based negative capacitance field effect transistor (NCFET) to replace conventional MOSFETs as the rectifying device in RF-DC circuits, aiming to enhance the rectification efficiency under low-power density conditions. By combining theoretical analysis with device simulations, the impacts of the ferroelectric material anisotropy, ferroelectric layer thickness, and active region doping concentration on the device performance were systematically optimized. The proposed NCFET structure is tailored for microwave wireless power transmission applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:
Poly (ethylene oxide) (PEO)-based polymer electrolytes have promising applications in all-solid-state lithium metal batteries. However, their wide range of practical applications is severely limited by their relatively low room temperature lithium ion conductivity and narrow electrochemical window. In this paper, based on the ability of spontaneous polarization of ferroelectric materials to generate polarization field under applied electric field and the characteristics of Metal-Organic-Frameworks (MOFs) materials with regular adjustable pore structure, a Nano material combining ferroelectric materials and MOF (NUS-6(Hf)-MOF) was first proposed to be added to PEO polymer electrolyte as a filler.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!