We demonstrate an optical detection and decoding strategy to increase the information rate and spectral efficiency of free-space laser communication links affected by turbulence by means of dense orbital angular momentum (OAM) modulation. Using three candidate receiver architectures-based on a Shack-Hartmann sensor, a Mode Sorter, and a complex conjugate projection scheme as a base case-we demonstrate an algorithmic classification system based on the received OAM spectra produced by these architectures. This classification scheme allows low-error-rate data transmission in turbulence using 16-OAM, 32-OAM, and 64-OAM symbol constellations, with OAM states between -20 and 20. We evaluate and compare their performance under weak to strong atmospheric turbulence conditions using an accuracy metric and confusion matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.455425 | DOI Listing |
Nat Commun
January 2025
School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).
View Article and Find Full Text PDFNeural Netw
January 2025
Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Center of Intelligent Computing, School of Mathematics, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Event-related potentials (ERPs) can reveal brain activity elicited by external stimuli. Innovative methods to decode ERPs could enhance the accuracy of brain-computer interface (BCI) technology and promote the understanding of cognitive processes. This paper proposes a novel Multi-Scale Pyramid Squeeze Attention Similarity Optimization Classification Neural Network (MS-PSA-SOC) for ERP Detection.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Biomedical Engineering, The University of Melbourne, Parkville, Melbourne, Victoria, 3010, AUSTRALIA.
Multiple Sclerosis (MS) is a heterogeneous autoimmune-mediated disorder affecting the central nervous system, commonly manifesting as fatigue and progressive limb impairment. This can significantly impact quality of life due to weakness or paralysis in the upper and lower limbs. A Brain-Computer Interface (BCI) aims to restore quality of life through control of an external device, such as a wheelchair.
View Article and Find Full Text PDFJ Neural Eng
January 2025
University of Pittsburgh, 1622 Locust St, Pittsburgh, Pennsylvania, 15219, UNITED STATES.
Real-world implementation of brain-computer interfaces (BCI) for continuous control of devices should ideally rely on fully asynchronous decoding approaches. That is, the decoding algorithm should continuously update its output by estimating the user's intended actions from real-time neural activity, without the need for any temporal alignment to an external cue. This kind of open-ended temporal flexibility is necessary to achieve naturalistic and intuitive control, but presents a challenge: how do we know when it is appropriate to decode anything at all? Activity in motor cortex is dynamic and modulates with many different types of actions (proximal arm control, hand control, speech, etc.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Psychiatry Research and Center for Cognitive and Computational Neuropsychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
Soccer is arguably the most widely followed sport worldwide, and many dream of becoming soccer players. However, only a few manage to achieve this dream, which has cast a significant spotlight on elite soccer players who possess exceptional skills to rise above the rest. Originally, such attention was focused on their great physical abilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!