In photonic reservoir computing, semiconductor lasers with delayed feedback have shown to be suited to efficiently solve difficult and time-consuming problems. The input data in this system is often optically injected into the reservoir. Based on numerical simulations, we show that the performance depends heavily on the way that information is encoded in this optical injection signal. In our simulations we compare different input configurations consisting of Mach-Zehnder modulators and phase modulators for injecting the signal. We observe far better performance on a one-step ahead time-series prediction task when modulating the phase of the injected signal rather than only modulating its amplitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.449508 | DOI Listing |
Energy Fuels
January 2025
Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zurich, Zurich 8092, Switzerland.
Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.
View Article and Find Full Text PDFThis erratum corrects an error in Funding of the original paper, Opt. Express, 32(10), 17452 (2024). 10.
View Article and Find Full Text PDFIt is a common occurrence in the fracture processes of deep carbonate reservoirs that the fracturing construction pressure during hydraulic fracturing operation exceeds 80 MPa. The maximum pumping pressure is determined by the rated pressure of the pumping pipe equipment and the reservoir characteristics, which confine the fracture to the target area. When the pump pressure exceeds the safety limit, hydraulic fracturing has to reduce the construction displacement to prevent potential accidents caused by overpressure.
View Article and Find Full Text PDFCommun Eng
January 2025
Institut für Physik, Technische Universität Ilmenau, Ilmenau, Germany.
Reservoir computing is a machine learning method that is well-suited for complex time series prediction tasks. Both delay embedding and the projection of input data into a higher-dimensional space play important roles in enabling accurate predictions. We establish simple post-processing methods that train on past node states at uniformly or randomly-delayed timeshifts.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanics and Engineering, Liaoning Technical University, Fuxin, 123000, China.
Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!