We report optical transmission measurements on suspended silicon photonic-crystal waveguides, where one side of the photonic lattice is shifted by half a period along the waveguide axis. The combination of this glide symmetry and slow light leads to a strongly enhanced chiral light-matter interaction but the interplay between slow light and backscattering has not been investigated experimentally in such waveguides. We build photonic-crystal resonators consisting of glide-symmetric waveguides terminated by reflectors and use transmission measurements as well as evanescent coupling to map out the dispersion relation. We find excellent agreement with theory and measure group indices exceeding 90, implying significant potential for applications in slow-light devices and chiral quantum optics. By measuring resonators of different length, we assess the role of backscattering induced by fabrication imperfections and its intimate connection to the group index.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.449221DOI Listing

Publication Analysis

Top Keywords

slow light
12
photonic-crystal waveguides
8
transmission measurements
8
observation slow
4
light glide-symmetric
4
glide-symmetric photonic-crystal
4
waveguides
4
waveguides report
4
report optical
4
optical transmission
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!