Surface-enhanced Raman scattering (SERS) is a powerful analytical method that is especially suitable for the detection of protein molecules. Detection sensitivity of SERS is directly related to the enhancement factor of the substrate, which is dependent on the strength of a local surface electric field generated by surface plasmonic resonance from substrate. In this study, an electromagnetic induced transparency like (EIT-like) metamaterial was used as the SERS substrate. The corresponding plasmonic resonance structure not only produces stronger optical near field but also reduces the spectral line broadening due to radiation damping. This is very beneficial for SERS process, which is strongly dependent on electric field intensity, to improve the sensitivity of SERS detection. Compared with the single resonance mode substrate, the enhancement factor for SERS with the double-mode substrate was increased by an order of magnitude. The obtained EIT-like substrate was used as a SERS-active substrate to detect Lens culinaris agglutinin (LCA)-reactive fraction of AFP (AFP-L3), a hepatocellular carcinoma (HCC)-specific maker. Experimental results are in good agreement with the clinical diagnosis, which demonstrates the potential application of metamaterials in the SERS-based diagnosis and biosensing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.455350DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
raman scattering
8
electromagnetic induced
8
induced transparency
8
substrate
8
hepatocellular carcinoma
8
sensitivity sers
8
enhancement factor
8
electric field
8
plasmonic resonance
8

Similar Publications

Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy for the characterization of filtrate portions of blood serum samples of myocardial infarction patients using 30 kDa centrifugal filter devices.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Institut - Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, Montréal, Quebec H3C 3J7, Canada.

Myocardial infarction (MI) is the leading cause of death and disability worldwide. It occurs when a thrombus forms after an atherosclerotic plaque bursts, obstructing blood flow to the heart. Prompt and accurate diagnosis is crucial for improving patient survival.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy as effective tool for detection of sialic acid as cancer biomarker.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Electronic address:

Sialic acid, a negatively charged nine-carbon monosaccharide, is mainly located at the terminal end of glycan chains on glycoproteins and glycolipids of cell surface and most secreted proteins. Elevated levels of sialylated glycans have been known as a hallmark in numerous cancers. As a result, sialic acid acts as a useful and accessible cancer biomarker for early cancer detection and monitoring the disease development during cancer treatment which is crucial in elevating the survival rate.

View Article and Find Full Text PDF

The proliferation of micro/nanoplastics (MNPs) has emerged as a pivotal environmental issue, largely due to their potential for human exposure. Consequently, the development of sensitive and efficient detection methodologies is paramount for elucidating their environmental footprint. Here, we report a novel three-dimensional (3D) surface-enhanced Raman scattering (SERS) sensor, which integrate TiCT/TiO/WO semiconductor heterostructure, for the rapid and sensitive detection of MNPs in environmental matrices.

View Article and Find Full Text PDF

From automated Raman to cost-effective nanoparticle-on-film (NPoF) SERS spectroscopy: A combined approach for assessing micro- and nanoplastics released into the oral cavity from chewing gum.

J Hazard Mater

December 2024

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, 18-30 Malone Road, Belfast BT9 5DL, United Kingdom. Electronic address:

Microplastics (MPs) and Nanoplastics (NPs), a burgeoning health hazard, often go unnoticed due to suboptimal analytical tools, making their way inside our bodies through various means. Surface Enhanced Raman Spectroscopy (SERS), although is utilized in detecting NPs, challenges arise at low concentrations due to their low Raman cross section and inability to situate within hotspots owing to their ubiquitous size and shape. This study presents an innovative and cost-effective approach employing household metallic foils (aluminium and copper) as nanoparticle-on-film (NPoF) substrates for targeting such analytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!