Atomic structure of an FeCrMoCBY metallic glass revealed by high energy x-ray diffraction.

J Phys Condens Matter

Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, United States of America.

Published: May 2022

Amorphous bulk metallic glasses with the composition FeCrMoCBYhave been of interest due to their special mechanical and electronic properties, including corrosion resistance, high yield-strength, large elasticity, catalytic performance, and soft ferromagnetism. Here, we apply a reverse Monte Carlo technique to unravel the atomic structure of these glasses. The pair-distribution functions for various atomic pairs are computed based on the high-energy x-ray diffraction data we have taken from an amorphous sample. Monte Carlo cycles are used to move the atomic positions until the model reproduces the experimental pair-distribution function. The resulting fitted model is consistent with oursimulations of the metallic glass. Our study contributes to the understanding of functional properties of Fe-based bulk metallic glasses driven by disorder effects.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac6a9aDOI Listing

Publication Analysis

Top Keywords

atomic structure
8
metallic glass
8
x-ray diffraction
8
bulk metallic
8
metallic glasses
8
monte carlo
8
atomic
4
structure fecrmocby
4
metallic
4
fecrmocby metallic
4

Similar Publications

Single-Atom Catalysts Boosted Electrochemiluminescence.

Chempluschem

March 2025

Shanghai University, Chemistry, Shangda Road 99, 200444, Shanghai, CHINA.

Electrochemiluminescence (ECL) combines electrochemical redox processes with photochemical light emission, offering exceptional sensitivity, spatial control, and stability. Widely applied in biosensing, medical diagnostics, and environmental monitoring, its efficiency often depends on advanced catalytic materials. Single-atom catalysts (SACs), featuring isolated metal atoms dispersed on a support, have emerged as promising candidates due to their unique electronic structures, high atom utilization, and tunable catalytic properties.

View Article and Find Full Text PDF

Mass spectrometric monitoring of redox transformation and arylation of tryptophan.

Anal Chim Acta

May 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:

Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.

View Article and Find Full Text PDF

Synthesis, cytotoxicity and HQSAR study of amides-fused isosteviol derivatives as potential anti-colorectal cancer agents.

Fitoterapia

March 2025

Innovative Practice Platform for Research-oriented Teaching of Natural Product Resources Development and Application, School of Food Science and Chemical Engineering, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China.

A series of novel amide-fused isosteviol derivatives were designed and synthesized. Their cytotoxicities in vitro against HCT-116 cells were screened. The preliminary bioassays indicated that most of the title compounds exhibited noteworthy cytotoxicity.

View Article and Find Full Text PDF

PocketDTA: A pocket-based multimodal deep learning model for drug-target affinity prediction.

Comput Biol Chem

March 2025

Scientific Research Management Department, Shanghai University, Shanghai, 200444, China. Electronic address:

Drug-target affinity prediction is a fundamental task in the field of drug discovery. Extracting and integrating structural information from proteins effectively is crucial to enhance the accuracy and generalization of prediction, which remains a substantial challenge. This paper proposes a pocket-based multimodal deep learning model named PocketDTA for drug-target affinity prediction, based on the principle of "structure determines function".

View Article and Find Full Text PDF

Oxygen-excluded nanoimaging of polymer blend films.

Sci Adv

March 2025

Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.

Polymer blend films exhibit unique properties and have applications in various fields. However, understanding their nanoscale structures and polymer component distributions remains a challenge. To address this limitation, we have developed a super-resolution fluorescence microscopy-based technique called oxygen-excluded nanoimaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!