This paper presents a 40 GHz microwave biosensor used to monitor and characterize single cells (THP-1) subjected to electrochemotherapy and obtain an electronic signature of the treatment efficiency. This biosensor proposes a non-destructive and label-free technique that first allows, with the rapid measurement of single untreated cells in their culture medium, the extraction of two frequency-dependent dielectric parameters, the capacitance (C (f)) and the conductance (G (f)). Second, this technique can powerfully reveal the effects of a chemical membrane permeabilizing treatment (Saponin). At last, it permits us to detect, and predict, the potentiation of a molecule classically used in chemotherapy (Bleomycin) when combined with the application of electric pulses (principle of electrochemotherapy). Treatment-affected cells show a decrease in the capacitive and conductive contrasts, indicating damages at the cellular levels. Along with these results, classical biological tests are conducted. Statistical analysis points out a high correlation rate (R>0.97), which clearly reveals the reliability and efficacy of our technique and makes it an attractive technique for biology related researches and personalized medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2022.3170267DOI Listing

Publication Analysis

Top Keywords

microwave biosensor
8
single cell
4
cell microwave
4
biosensor monitoring
4
monitoring cellular
4
cellular response
4
response electrochemotherapy
4
electrochemotherapy paper
4
paper presents
4
presents ghz
4

Similar Publications

Paper-Based Sensors: Fantasy or Reality?

Nanomaterials (Basel)

January 2025

Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova.

This article analyzes the prospects for the appearance of paper-based sensors on the sensor market. It is concluded that paper-based sensors are not a fantasy but a reality. It is shown that paper has properties that make it possible to develop a wide variety of paper-based sensors, such as SERS, colorimetric, fluorescent, conductometric, capacitive, fiber-optic, electrochemical, microfluidic, shape-deformation, microwave, and various physical sensors.

View Article and Find Full Text PDF

In this work, an integrated microfluidic microwave array sensor is proposed for the enrichment and detection of mixed biological solution. In individuals with urinary tract infections or intestinal health issues, the levels of white blood cells (WBCs) and () in urine or intestinal extracts can be significantly elevated compared to normal. The proposed integrated chip, characterized by its low cost, simplicity of operation, fast response, and high accuracy, is designed to detect a mixed solution of WBCs and .

View Article and Find Full Text PDF

Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!