Attention Deficit Hyperactivity Disorder (ADHD) is a type of mental health disorder that can be seen from children to adults and affects patients' normal life. Accurate diagnosis of ADHD as early as possible is very important for the treatment of patients in clinical applications. Some traditional classification methods, although having been shown powerful in many other classification tasks, are not as successful in the application of ADHD classification. In this paper, we propose two novel deep learning approaches for ADHD classification based on functional magnetic resonance imaging. The first method incorporates independent component analysis with convolutional neural network. It first extracts independent components from each subject. The independent components are then fed into a convolutional neural network as input features to classify the ADHD patient from typical controls. The second method, called the correlation autoencoder method, uses correlations between regions of interest of the brain as the input of an autoencoder to learn latent features, which are then used in the classification task by a new neural network. These two methods use different ways to extract the inter-voxel information from fMRI, but both use convolutional neural networks to further extract predictive features for the classification task. Empirical experiments show that both methods are able to outperform the classical methods such as logistic regression, support vector machines, and other methods used in previous studies.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2022.3170527DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
neural network
12
attention deficit
8
deficit hyperactivity
8
hyperactivity disorder
8
classification based
8
deep learning
8
adhd classification
8
independent components
8
features classification
8

Similar Publications

A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Radiol Artif Intell

January 2025

From the Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P. R. China (J.K., C.F.W., Z.H.C., G.Q.Z., Y.Q.W., L.L., Y.S.); Department of Radiation Therapy, Nanhai People's Hospital, The Sixth Affiliated Hospital, South China University of Technology, Foshan, China (J.Y.P., L.J.L.); and Department of Electronic Engineering, Information School, Yunnan University, Kunming, China (W.B.L.).

Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN).

View Article and Find Full Text PDF

In order to promote the digital dissemination and preservation of Chinese intangible cultural heritage, this work constructs a digital platform for its transmission. The platform integrates a range of advanced technologies, including the Densely Connected Convolutional Networks - Bottleneck and Compression model, a notable convolutional neural network, along with natural language processing algorithms, generative adversarial network algorithms, and neural collaborative filtering algorithms. The platform is validated with 224,055 publicly archived valid data records, ensuring its effectiveness and reliability.

View Article and Find Full Text PDF

Purpose: The diagnosis of fungal keratitis using potassium hydroxide (KOH) smears of corneal scrapings enables initiation of the correct antimicrobial therapy at the point-of-care but requires time-consuming manual examination and expertise. This study evaluates the efficacy of a deep learning framework, dual stream multiple instance learning (DSMIL), in automating the analysis of whole slide imaging (WSI) of KOH smears for rapid and accurate detection of fungal infections.

Design: Retrospective observational study.

View Article and Find Full Text PDF

Assessment of using transfer learning with different classifiers in hypodontia diagnosis.

BMC Oral Health

January 2025

Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.

Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.

View Article and Find Full Text PDF

Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!