Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon cloth electrode modified by covalently attaching a manganese organometallic catalyst is used as cathode for the electrochemical reduction of CO in methanol solutions. Six different industrial amines are employed as co-catalyst in millimolar concentrations to deliver a series of new reactive system. While such absorbents were so far believed to provide a CO reservoir and act as sacrificial proton source, we herein demonstrate that this role can be played by methanol, and that the adduct formed between CO and the amine can act as an effector or inhibitor toward the catalyst, thereby enhancing or reducing the production of formate. Pentamethyldiethylentriamine (PMDETA), identified as the best effector in our series, converts CO in wet methanolic solution into bisammonium bicarbonate. Computational studies revealed that this adduct is responsible for a barrierless transformation of CO to formate by the reduced form of the Mn catalyst covalently bonded to the electrode surface. As a consequence, selectivity can be switched on demand from CO to formate anion, and in the case of (PMDETA) an impressive TON of 2.8×10 can be reached. This new valuable knowledge on an integrated capture and utilization system paves the way toward more efficient transformation of CO into liquid fuel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325359 | PMC |
http://dx.doi.org/10.1002/chem.202104377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!