Myocardial ischemia (MI) causes somatic referred pain and sympathetic hyperactivity, and the role of sensory inputs from referred areas in cardiac function and sympathetic hyperactivity remain unclear. Here, in a rat model, we showed that MI not only led to referred mechanical hypersensitivity on the forelimbs and upper back, but also elicited sympathetic sprouting in the skin of the referred area and C8-T6 dorsal root ganglia, and increased cardiac sympathetic tone, indicating sympathetic-sensory coupling. Moreover, intensifying referred hyperalgesic inputs with noxious mechanical, thermal, and electro-stimulation (ES) of the forearm augmented sympathetic hyperactivity and regulated cardiac function, whereas deafferentation of the left brachial plexus diminished sympathoexcitation. Intradermal injection of the α adrenoceptor (αAR) antagonist yohimbine and agonist dexmedetomidine in the forearm attenuated the cardiac adjustment by ES. Overall, these findings suggest that sensory inputs from the referred pain area contribute to cardiac functional adjustment via peripheral αAR-mediated sympathetic-sensory coupling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9068860PMC
http://dx.doi.org/10.1007/s12264-022-00841-wDOI Listing

Publication Analysis

Top Keywords

sympathetic hyperactivity
12
rat model
8
myocardial ischemia
8
referred pain
8
sensory inputs
8
inputs referred
8
cardiac function
8
sympathetic-sensory coupling
8
referred
7
cardiac
6

Similar Publications

Ropivacaine and celecoxib-loaded injectable composite hydrogel for improved chronic pain-exacerbated myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:

Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.

View Article and Find Full Text PDF

Paroxysmal sympathetic hyperactivity: A common consequence of traumatic brain injury.

Auton Neurosci

January 2025

Department of Medicine, Jinnah Sindh Medical University, Rafiqi H J Shaheed Road, Karachi, Pakistan. Electronic address:

Paroxysmal Sympathetic Hyperactivity (PSH) is a challenging and often underrecognized syndrome, commonly arising after a traumatic brain injury (TBI). Characterized by episodic bursts of heightened sympathetic activity, PSH presents with a distinct constellation of symptoms including hypertension, tachycardia, hyperthermia, and diaphoresis. While the exact pathophysiology remains elusive, current evidence suggests that the syndrome results from an imbalance between excitatory and inhibitory neuronal pathways within the central nervous system, leading to dysregulated autonomic responses.

View Article and Find Full Text PDF

Objective: To investigate the effect of hyperbaric oxygen (HBO) on paroxysmal sympathetic hyperexcitation (PSH) after brain injury.

Methods: A multicenter retrospective study was conducted. Fifty-six patients with PSH who received HBO treatment from four hospitals in Henan Province from January 2021 to September 2023 were selected as the HBO group, and 36 patients with PSH who did not receive HBO treatment from Zhengzhou People's Hospital from May 2018 to December 2020 were selected as the control group.

View Article and Find Full Text PDF

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Paroxysmal sympathetic hyperactivity (PSH) occurs with high prevalence among critically ill patients with traumatic brain injury (TBI) and is associated with worse outcomes. The PSH-Assessment Measure (PSH-AM) consists of a Clinical Features Scale and a diagnosis likelihood tool (DLT) intended to quantify the severity of sympathetically mediated symptoms and the likelihood that they are due to PSH, respectively, on a daily basis. Here, we aim to identify and explore the value of dynamic trends in the evolution of sympathetic hyperactivity following acute TBI using elements of the PSH-AM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!