Excitation transfer, the transfer of arousal from one emotion to another, might be a mechanism in the development of unusual sexual interests. In this pilot study, we investigated whether we could induce excitation transfer between various emotions and sexual arousal in a laboratory setting with 30 male volunteers. We induced low-level sexual arousal in four different emotional states (aggression/dominance, endearment, fear, disgust) and a neutral state. Sexual arousal was measured using penile plethysmography and self-report. Although there was no mean group effect, possibly due to large interindividual variations, 60% of the subjects showed more sexual arousal in response to sexual stimulation in at least one of the emotional states than in the neutral state. Excitation transfer was most prominent with aggression/dominance and least prominent with disgust. Genital excitation transfer was strongly related to lower penile reactivity and to higher self-reported erotophilia. This pilot study paves the way for further research into excitation transfer as a mechanism to increase the salience of stimuli that otherwise would not have been sexual in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10508-021-02235-x | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, lihu road 1800#, 214122, Wuxi, CHINA.
Circularly polarized luminescence (CPL) has garnered significant research attention. Achieving a high luminescence dissymmetry factor (glum) is a key challenge in this field. Herein, we reported, for the first time, the fabrication of a chiral assembled film consisting of chiral D-/L-Selenium nanoparticles (D-/L-Se NPs) and DSPE-PEG-NH2 modified upconversion nanoparticles (DPNUCNPs) with remarkable CPL properties that were generated by the interfacial self-assembly technique.
View Article and Find Full Text PDFACS Nano
December 2024
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Light-harvesting complex II (LHCII), the most abundant membrane protein in photosystem II, plays dual roles, i.e., efficient light harvesting and energy transfer to the reaction center under low light conditions and dissipating excess energy as heat to prevent photodamage under high irradiation conditions.
View Article and Find Full Text PDFSmall
December 2024
School of Chemical Engineering, Sichuan University, No 24th, South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, China.
The exogenous bacterial infection and formation of biofilm on the surface of titanium implants can affect the adhesion, proliferation, and differentiation of cells associated with osteogenesis, ultimately leading to surgical failure. This study focuses on two critical stages for biofilm formation: i) bacterial adhesion and aggregation, ii) growth and proliferation. The titanium with well-organized titania nanotube arrays is first modified by nitrogen dopants, then loaded with CuFeSe nanoparticles to form a p-n heterojunction.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA.
Multi-copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio-electrochemical applications. This study employs time-dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three-coordinate models and 1 four-coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!