Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tailoring Shockley surface-state (SS) electrons utilizing complex interfacial supramolecular tessellations was explored by low-temperature scanning tunnelling microscopy and spectroscopy, combined with computational modelling using electron plane wave expansion (EPWE) and empirical tight-binding (TB) methods. Employing a recently introduced gas-mediated on-surface reaction protocol, three distinct types of open porous networks comprising paired organometallic species as basic tectons were selectively synthesized. In particular, these supramolecular networks feature semiregular Archimedean tilings, providing intricate quantum dots (QDs) coupling scenarios compared to hexagonal porous superlattices. Our experimental results in conjunction with modelling calculations demonstrate the possibility of realizing novel two-dimensional electronic structures such as Kagome- and Dirac-type as well as hybrid Kagome-type bands QD coupling. Compared to constructing SS electron pathways molecular manipulations, our studies reveal significant potential of exploiting QD coupling as a complementary and versatile route for the control of surface electronic landscapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr00536k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!