We present a speckle-based deep learning approach for orbital angular momentum (OAM) mode classification. In this method, we have simulated the speckle fields of the Laguerre-Gauss (LG), Hermite-Gauss (HG), and superposition modes by multiplying these modes with a random phase function and then taking the Fourier transform. The intensity images of these speckle fields are fed to a convolutional neural network (CNN) for training a classification model that classifies modes with an accuracy >99. We have trained and tested our method against the influence of atmospheric turbulence by training the models with perturbed LG, HG, and superposition modes and found that models are still able to classify modes with an accuracy >98. We have also trained and tested our model with experimental speckle images of LG modes generated by three different ground glasses. We have achieved a maximum accuracy of 96% for the most robust case, where the model is trained with all simulated and experimental data. The novelty of the technique is that one can do the mode classification just by using a small portion of the speckle fields because speckle grains contain the information about the original mode, thus eliminating the need for capturing the whole modal field, which is modal dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.446352DOI Listing

Publication Analysis

Top Keywords

speckle fields
12
speckle-based deep
8
deep learning
8
learning approach
8
orbital angular
8
angular momentum
8
mode classification
8
superposition modes
8
modes accuracy
8
trained tested
8

Similar Publications

Systemic Sodium Iodate Injection as a Model for Expanding Geographic Atrophy.

Transl Vis Sci Technol

January 2025

FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Purpose: Geographic atrophy (GA), an advanced form of dry age-related macular degeneration (AMD), has limited treatment options. This study introduces a novel mouse model featuring an expanding GA patch that can be used to test mechanisms and therapeutics.

Methods: C57Bl/6J male mice (n = 96) aged 9-10 weeks received an intraperitoneal (IP) injection of 20 mg/kg sodium iodate (NaIO3).

View Article and Find Full Text PDF

In this work, a cost-effective, scalable pneumatic silicone actuator array is introduced, designed to dynamically conform to the user's skin and thereby alleviate localised pressure within a prosthetic socket. The appropriate constitutive models for developing a finite element representation of these actuators are systematically identified, parametrised, and validated. Employing this computational framework, the surface deformation fields induced by 270 variations in soft actuator array design parameters under realistic load conditions are examined, achieving predictive accuracies within 70 µm.

View Article and Find Full Text PDF

The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.

View Article and Find Full Text PDF

This study presents a cutting-edge imaging technique for special unmanned vehicles (UAVs) designed to enhance tunnel inspection capabilities. This technique integrates ghost imaging inspired by the human visual system with lateral inhibition and variable resolution to improve environmental perception in challenging conditions, such as poor lighting and dust. By emulating the high-resolution foveal vision of the human eye, this method significantly enhances the efficiency and quality of image reconstruction for fine targets within the region of interest (ROI).

View Article and Find Full Text PDF

Transcranial Cortex-Wide Imaging of Murine Ischemic Perfusion With Large-Field Multifocal Illumination Microscopy.

Stroke

January 2025

Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.).

Background: Ischemic stroke is a common cause of death worldwide and a main cause of morbidity. Presently, laser speckle contrast imaging, x-ray computed tomography, and magnetic resonance imaging are the mainstay for stroke diagnosis and therapeutic monitoring in preclinical studies. These modalities are often limited in terms of their ability to map brain perfusion with sufficient spatial and temporal resolution, thus calling for development of new brain perfusion techniques featuring rapid imaging speed, cost-effectiveness, and ease of use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!