A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Implementation of a real-time star centroid extraction algorithm with high speed and superior denoising ability. | LitMetric

Star tracker is the most precise attitude measuring device, and its advantages include a high resolution and high update rate. Star centroid extraction, which is a very time-consuming process, has great influence on the attitude update rate. This paper proposes a real-time star centroid extraction algorithm based on a field programmable gate array. First, a 1D top-hat filter is used for star segmentation, which is suitable for both uniform and nonuniform background conditions. Second, multichannel image data is reorganized together into a complete frame through image stitching, which prevents the star spots on the channel boundary from being divided into different parts. Finally, star coordinates are extracted by the center-of-mass algorithm. For an image sensor with a resolution of 2048×2048 pixels, simulation results conducted by a ModelSim simulator show that the star centroid processing time of a single frame is roughly 5.2 ms. Real night experiments demonstrate that the standard deviation of a star centroid error is within 10 pixel and the standard deviation of attitude is (2.6 2.2 12.0) arcseconds, which proves that the proposed star centroid extraction algorithm can work continuously and stably.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.450502DOI Listing

Publication Analysis

Top Keywords

star centroid
24
centroid extraction
16
extraction algorithm
12
star
10
real-time star
8
update rate
8
standard deviation
8
centroid
6
implementation real-time
4
extraction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!