In people with the genetic disease cystic fibrosis (CF), bacterial infections involving the opportunistic pathogen Pseudomonas aeruginosa are a significant cause of morbidity and mortality. P. aeruginosa uses a cell-cell signaling mechanism called quorum sensing (QS) to regulate many virulence functions. One type of QS consists of acyl-homoserine lactone (AHL) signals produced by LuxI-type signal synthases, which bind a cognate LuxR-type transcription factor. In laboratory strains and conditions, P. aeruginosa employs two AHL synthase/receptor pairs arranged in a hierarchy, with the LasI/R system controlling the RhlI/R system and many downstream virulence factors. However, P. aeruginosa isolates with inactivating mutations in are frequently isolated from chronic CF infections. We and others have shown that these isolates frequently use RhlR as the primary QS regulator. RhlR is rarely mutated in CF and environmental settings. We were interested in determining whether there were reproducible genetic characteristics of these isolates and whether there was a central group of genes regulated by RhlR in all isolates. We examined five isolates and found signatures of adaptation common to CF isolates. We did not identify a common genetic mechanism to explain the switch from Las- to Rhl-dominated QS. We describe a core RhlR regulon encompassing 20 genes encoding 7 products. These results suggest a key group of QS-regulated factors important for pathogenesis of chronic infections and position RhlR as a target for anti-QS therapeutics. Our work underscores the need to sample a diversity of isolates to understand QS beyond what has been described in laboratory strains. The bacterial pathogen Pseudomonas aeruginosa can cause chronic infections that are resistant to treatment in immunocompromised individuals. Over the course of these infections, the original infecting organism adapts to the host environment. P. aeruginosa uses a cell-cell signaling mechanism termed quorum sensing (QS) to regulate virulence factors and cooperative behaviors. The key QS regulator in laboratory strains, LasR, is frequently mutated in infection-adapted isolates, leaving another transcription factor, RhlR, in control of QS gene regulation. Such isolates provide an opportunity to understand Rhl-QS regulation without the confounding effects of LasR, as well as the scope of QS in the context of within-host evolution. We show that a core group of virulence genes is regulated by RhlR in a variety of infection-adapted LasR-null isolates. Our results reveal commonalities in infection-adapted QS gene regulation and key QS factors that may serve as therapeutic targets in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9040856 | PMC |
http://dx.doi.org/10.1128/msystems.00113-22 | DOI Listing |
Biotechnol Bioeng
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.
N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.
View Article and Find Full Text PDFSci Rep
January 2025
Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea. Electronic address:
Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms.
View Article and Find Full Text PDFmBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Electronics & Communication Engineering, Jaypee University of Information Technology, Solan, H.P., India.
A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!