The epidermal growth factor receptor (EGFR) contributes to tumor malignancy through gene amplification and/or protein overexpression. In our previous study, we developed an anti-human EGFR (hEGFR) monoclonal antibody (mAb), clone EMab-134 (mouse IgG, kappa), which specifically detects both hEGFR and dog EGFR (dEGFR). The defucosylated mouse IgG version of EMab-134 exhibits antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dEGFR-overexpressed CHO-K1 (CHO/dEGFR) cells and antitumor activities in mouse xenografts of CHO/dEGFR cells. In this study, we produced a defucosylated mouse-dog chimeric anti-EGFR mAb (E134Bf), and the reactivity of E134Bf against a canine mammary gland tumor cell line (SNP) was examined by flow cytometry. Furthermore, E134Bf highly exerted ADCC and CDC for SNP cells. The administration of E134Bf with canine mononuclear cells significantly suppressed the SNP xenograft growth. These results suggest that E134Bf exerts antitumor effects against dEGFR-expressing canine mammary gland tumors and could be valuable as part of an antibody treatment regimen for them.

Download full-text PDF

Source
http://dx.doi.org/10.1089/mab.2021.0040DOI Listing

Publication Analysis

Top Keywords

canine mammary
12
mammary gland
12
antitumor activities
8
activities mouse
8
gland tumor
8
defucosylated mouse-dog
8
mouse-dog chimeric
8
growth factor
8
factor receptor
8
mouse igg
8

Similar Publications

Canine mammary tumors as a promising adjunct preclinical model for human breast cancer research: similarities, opportunities, and challenges.

Arch Pharm Res

January 2025

Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.

Despite significant progress in the field of human breast cancer research and treatment, there is a consistent increase in the incidence rate of 0.5 percent annually, posing challenges in the development of effective novel therapeutic strategies. The failure rate of drugs in clinical trials stands at approximately 95%, primarily attributed to the limitations and lack of reliability of existing preclinical models, such as mice, which do not mimic human tumor biology.

View Article and Find Full Text PDF

Canine mammary carcinomas (CMCs) represent the most prevalent form of cancer in female dogs, characterized by a high incidence and mortality rate. C6 ceramide is recognized for its multifaceted anti-cancer properties, yet its specific influence on CMCs remains to be elucidated. Long noncoding RNAs (lncRNAs), now recognized as functional "dark matter" in precision oncology, are particularly intriguing, with 44% of canine lncRNAs exhibiting tissue-specific expression.

View Article and Find Full Text PDF

Aim: The interlacing interaction between proto-oncoproteins and tumor-suppressing proteins in malignant canine mammary tumors (mCMT) microenvironment remains largely unexplored. The present study intended to decipher the i) association between the intratumoral expression of ERα, HER-2, pan-RAS, p53 and aromatase, ii) their relationship with the clinicohistological parameters and serum sex hormones, and iii) their prognostic relevance in mCMT.

Materials And Methods: Tumor samples from animals with mCMT (n = 27) were subjected to histopathology and immunohistochemistry for ERα, HER-2, pan-RAS, p53, and aromatase.

View Article and Find Full Text PDF

Background: Breast cancer (BC) is the most common cancer in women. Likewise, canine mammary tumors (CMT) represent the most common cancer in intact female dogs and develop in the majority spontaneously. Similarities exist in clinical presentation, histopathology, biomarkers, and treatment.

View Article and Find Full Text PDF

Immunocytochemistry of myoepithelial cell types in canine mammary tumors.

Biotech Histochem

December 2024

Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.

Myoepithelial cells (MECs) are known to play an active role in mixed mammary tumors and are found in dogs as well as in humans. The study aimed to assess the morphologic features of epithelial and mesenchymal cells and MECs and investigate their roles in epithelial-mesenchymal transformation in different tumor types in canine mammary tumors. Immunohistochemical staining was performed on 165 specimens from benign mixed tumors (BMT), carcinosarcomas, and simple carcinomas (SC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!