NIR-II-Responsive CeO@HA Nanotheranostics for Photoacoustic Imaging-Guided Sonodynamic-Enhanced Synergistic Phototherapy.

Langmuir

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.

Published: May 2022

The therapeutic effect of photothermal therapy (PTT) and photodynamic therapy (PDT) is severely limited because of the shallow tissue penetration depth of the first near-infrared (NIR-I) light. Multifunctional nanotheranostics irradiated by the second near-infrared (NIR-II) light have received wide interest with respect to deeper tissue penetration, and sonodynamic therapy (SDT) synergistic phototherapy can achieve the complete elimination of tumors. Herein, we successfully constructed a single NIR-II light-induced nanotheranostic using cerium oxide (CeO) with abundant oxygen vacancies for photoacoustic imaging-guided SDT-enhanced phototherapy for the first time. CeO with surface crystalline disorder showed extensive NIR-II region absorption and an outstanding photothermal conversion ability. In addition, the CeO layer with numerous oxygen defects can promote the separation of holes and electrons by ultrasound irradiation, which can remarkably enhance the efficacy of phototherapy to achieve high-efficiency tumor ablation. CeO was surface modified with hyaluronic acid (HA) to prepare CeO@HA to allow active tumor targeting efficiency. Both cell and animal experiments confirmed that all-in-one CeO@HA exhibited a high therapeutic efficacy of SDT-enhanced PDT/PTT under 1064 nm laser irradiation, which achieved complete tumor eradication without systemic toxicity. This study significantly broadened the application of NIR-II-responsive CeO for photoacoustic imaging-mediated SDT-enhanced phototherapy to the highly efficient and precise elimination of tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c00067DOI Listing

Publication Analysis

Top Keywords

photoacoustic imaging-guided
8
synergistic phototherapy
8
tissue penetration
8
phototherapy achieve
8
elimination tumors
8
sdt-enhanced phototherapy
8
ceo surface
8
phototherapy
5
ceo
5
nir-ii-responsive ceo@ha
4

Similar Publications

Albumin-Energized NIR-II Cyanine Dye for Fluorescence/Photoacoustic/Photothermal Multi-Modality Imaging-Guided Tumor Homologous Targeting Photothermal Therapy.

J Med Chem

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

Endowing cyanine dyes with hydrophilicity, long blood circulation, tumor targeting, and robust therapeutic efficacy in the second near-infrared (NIR-II) window is challenging for cancer treatment. Herein, we develop cancer cell membrane-coated albumin-NIR-II cyanine dye assemblies, denoted as LZ-1105@HAm, to optimize the photophysical properties of cyanine dyes in aqueous solution for NIR-II fluorescence (FL)/photoacoustic (PA)/photothermal (PT) multimodality imaging-guided tumor homologous targeting photothermal therapy. LZ-1105@HAm exhibits good hydrophilicity, extends the half-life of blood circulation from 0.

View Article and Find Full Text PDF

Mn-doped MOF nanoparticles mitigating hypoxia via in-situ substitution strategy for dual-imaging guided combination treatment of microwave dynamic therapy and chemotherapy.

J Colloid Interface Sci

January 2025

The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:

Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

A Spiro-Based NIR-II Photosensitizer with Efficient ROS Generation and Thermal Conversion Performances for Imaging-Guided Tumor Theranostics.

Adv Healthc Mater

January 2025

Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.

Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.

View Article and Find Full Text PDF

Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!