The generation of functional sperm relies on spermatogonial stem cells (SSCs) as they can maintain a stem cell pool for continuous generation of functional spermatozoa. The maintenance of SSCs is regulated by several factors. In this paper, we summarize the niche and intrinsic factors in regulating SSC self-renewal and proliferation. GDNF regulates SSC self-renewal through Ras-ERK1/2, SFC, PI3K/Akt and MEK/ERK-mTOR signaling pathways. FGF activates MAPK2K1, ERK and Akt pathways and EGF activates ERK and Akt pathways to induce SSC proliferation. Wnt ligands regulate SSC self-renewal and proliferation through both β-catenin dependent and independent pathways. SCF1 and CXCL12 are also found to have roles in SSC maintenance. As for intrinsic factors in SSCs, ETV5, Bcl6b, Lhx1, ID4 and Nanos2 are regulated by niche factors. They act as the downstream factors of niche factors in regulating SSC self-renewal and proliferation. Transcriptional factors OCT4 and PLZF, as well as FOXO1 in SSCs can directly regulate SSC self-renewal and proliferation. Although we have identified the factors, the detailed mechanism of these factors in regulating SSC fate determination is largely unknown. Here, we summarize factors which have roles in SSC fate determination and hope it will be beneficial for further study and treatment of male infertility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14670/HH-18-461 | DOI Listing |
The TEAD family of transcription factors are best known as the DNA-binding factor in the Hippo pathway, where they act by interacting with transcriptional coactivators YAP and TAZ (YAP/TAZ). Despite the importance of the Hippo pathway, the in vivo functions of TEAD in mammals have not been well established. By comparing mouse mutants lacking TEAD1 and TEAD2 (TEAD1/2) to those lacking YAP/TAZ, we found that TEAD1/2 have both YAP/TAZ-dependent and -independent functions during ventral telencephalon development.
View Article and Find Full Text PDFFront Med
January 2025
Guizhou University Medical College, Guiyang, 550025, China.
The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Hand Surgery, Plastic Surgery and Aesthetic Surgery, University Hospital, LMU Munich, Ziemssenstraße 5, 80336 Munich, Germany.
Aspirin (ASA) is one of the most used medications worldwide and has shown various effects on cellular processes, including stem cell differentiation. However, the effect of ASA on adipogenesis of adipose tissue-derived stem cells (ASCs) remains largely unknown. Considering the potential application of ASCs in regenerative medicine and cell-based therapies, this study investigates the effects of ASA on adipogenic differentiation in human ASCs.
View Article and Find Full Text PDFVet Sci
December 2024
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.
Background: Chemical-induced acute lung injury is characterized by impaired epithelial regenerative capacity, leading to acute pulmonary edema. Numerous studies have investigated the therapeutic potential of endogenous stem cells with particular emphasis on alveolar type 2 epithelial (AEC2) cells owing to their involvement in lung cell renewal. Sox9, a transcription factor known for its role in maintaining stem cell properties and guiding cell differentiation, marks a subset of AEC2 cells believed to contribute to epithelial repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!