A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Speed Estimation for Visual Tracking Emerges Dynamically from Nonlinear Frequency Interactions. | LitMetric

Sensing the movement of fast objects within our visual environments is essential for controlling actions. It requires online estimation of motion direction and speed. We probed human speed representation using ocular tracking of stimuli of different statistics. First, we compared ocular responses to single drifting gratings (DGs) with a given set of spatiotemporal frequencies to broadband motion clouds (MCs) of matched mean frequencies. Motion energy distributions of gratings and clouds are point-like, and ellipses oriented along the constant speed axis, respectively. Sampling frequency space, MCs elicited stronger, less variable, and speed-tuned responses. DGs yielded weaker and more frequency-tuned responses. Second, we measured responses to patterns made of two or three components covering a range of orientations within Fourier space. Early tracking initiation of the patterns was best predicted by a linear combination of components before nonlinear interactions emerged to shape later dynamics. Inputs are supralinearly integrated along an iso-velocity line and sublinearly integrated away from it. A dynamical probabilistic model characterizes these interactions as an excitatory pooling along the iso-velocity line and inhibition along the orthogonal "scale" axis. Such crossed patterns of interaction would appropriately integrate or segment moving objects. This study supports the novel idea that speed estimation is better framed as a dynamic channel interaction organized along speed and scale axes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113919PMC
http://dx.doi.org/10.1523/ENEURO.0511-21.2022DOI Listing

Publication Analysis

Top Keywords

speed estimation
8
speed
6
estimation visual
4
visual tracking
4
tracking emerges
4
emerges dynamically
4
dynamically nonlinear
4
nonlinear frequency
4
frequency interactions
4
interactions sensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!