A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel method to improve femoral head and stem taper stability intraoperatively in total hip arthroplasty - a proof of concept study. | LitMetric

A novel method to improve femoral head and stem taper stability intraoperatively in total hip arthroplasty - a proof of concept study.

Orthop Traumatol Surg Res

DePuy Synthes Joint Reconstruction, 700 Orthopaedic Drive, Warsaw, IN 46581, USA.

Published: December 2022

Background: Mechanically assisted crevice corrosion (MACC) has been associated with the compromised durability and fixation of modular total hip implants, adverse reaction of local tissue, and other undesirable clinical outcomes in total hip arthroplasty (THA). MACC is primarily caused by the relative motion between the femoral head and stem. To minimize the relative motion the taper connection between the two components must be strong enough. The current study addressed the following questions: (1) Does increasing the mass of the femoral stem improve the taper connection strength intraoperatively? (2) Does increasing the mass of the femoral stem reduce the risk of periprosthetic tissue damage intraoperatively?

Hypothesis: Increasing the mass of the femoral stem improve the taper connection strength intraoperatively.

Materials And Methods: During the experiment, femoral heads were impacted onto the stem tapers with and without an additional weight attached to the stem. The femoral heads were then pulled off to investigate the strength of the taper connection. The stem displacement and acceleration at impaction were also measured to evaluate the risk of periprosthetic tissue damage.

Results: The results showed that the pull-off force was increased by 24% (p=0.011, n=6) when an additional weight was attached to the stem. The additional weight also reduced the maximum stem acceleration and maximum stem displacement by 37% (p<0.001, n=6) and 14% (p=0.094, n=6), respectively.

Discussion: These findings suggest that the femoral head and stem taper connection strength can be significantly improved and the risk of periprosthetic tissue damage significantly reduced intraoperatively by attaching an additional weight to the stem to increase its mass.

Level Of Evidence: III, comparative in vitro mechanical investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.otsr.2022.103284DOI Listing

Publication Analysis

Top Keywords

taper connection
16
total hip
12
increasing mass
12
mass femoral
12
femoral stem
12
additional weight
12
stem
11
femoral head
8
head stem
8
relative motion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!